【題目】如圖,直線y=﹣x+5與雙曲線(x>0)相交于A,B兩點,與x軸相交于C點,△BOC的面積是
.若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線
(x>0)的交點有( )
A. 0個B. 1個C. 2個D. 0個,或1個,或2個
【答案】B
【解析】
試題令直線y=﹣x+5與y軸的交點為點D,過點O作OE⊥直線AC于點E,過點B作BF⊥x軸于點F,如圖所示.
令直線y=﹣x+5中x=0,則y=5,即OD=5;
令直線y=﹣x+5中y=0,則0=﹣x+5,解得:x=5,即OC=5.
在Rt△COD中,∠COD=90°,OD=OC=5,∴tan∠DCO==1,∠DCO=45°.
∵OE⊥AC,BF⊥x軸,∠DCO=45°,∴△OEC與△BFC都是等腰直角三角形,又∵OC=5,∴OE=.∵S△BOC=
BCOE=
BC=
,∴BC=
,∴BF=FC=
BC=1,∵OF=OC﹣FC=5﹣1=4,BF=1,∴點B的坐標為(4,1),∴k=4×1=4,即雙曲線解析式為
.
將直線y=﹣x+5向下平移1個單位得到的直線的解析式為y=﹣x+5﹣1=﹣x+4,將y=﹣x+4代入到中,得:
,整理得:
,∵△=16﹣4×4=0,∴平移后的直線與雙曲線
只有一個交點.故選B.
科目:初中數學 來源: 題型:
【題目】如圖,在菱形中,
,點
、
分別是
、
上任意的點(不與端點重合),且
,連接
與
相交于點
,連接
與
相交于點
.給出如下幾個結論:①
;②
;③
與
一定不垂直;④
的大小為定值.其中正確的結論有________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廣告公司設計一幅周長為16米的矩形廣告牌,廣告設計費為每平方米2000元.設矩形一邊長為x,面積為S平方米.
(1)求S與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)設計費能達到24000元嗎?為什么?
(3)當x是多少米時,設計費最多?最多是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設m是不小于﹣1的實數,關于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個不相等的實數根x1、x2,
(1)若x12+x22=6,求m值;
(2)令T=,求T的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為4的等邊中,點D、E分別是邊AC和AB的一點;
如圖1,當
時,連接BD、CE,設BD與CE交于點O,
求證:
;
求
的度數;
如圖2,點F是邊BC的中點,點D是邊AC的中點,過F作
交邊AB于點E,連接DE,請你利用目前所學知識試說明:
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(操作發現)
如圖①,在邊長為1個單位長度的小正方形組成的網格中,△ABC的三個頂點均在格點上.
(1)請按要求畫圖:將△ABC繞點A按逆時針方向旋轉90°,點B的對應點為B′,點C的對應點為C′,連接BB′
(2)在(1)所畫圖形中,∠AB′B= .
(問題解決)
如圖②,在等邊三角形ABC中,AC=,點P在△ABC內,且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學通過觀察、分析、思考,對上述問題形成了如下想法:
想法一:將△APC繞點A按順時針方向旋轉60°,得到△AP′B,連接PP′,尋找線段PA、PC之間的數量關系;
想法二:將△APB繞點A按逆時針方向旋轉60°,得到△AP′C′,連接PP′,尋找線段PA、PC之間的數量關系;
請參考小明同學的想法,完成該問題的解答過程.(求解一種方法即可)
(靈活運用)
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數),直接寫出BD的長(用含k的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形中,
,
,點
從
開始沿折線
以
的速度運動,點
從
開始沿
邊以
的速度移動,如果點
、
分別從
、
同時出發,當其中一點到達
時,另一點也隨之停止運動,設運動時間為
,當
________時,四邊形
也為矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形中,
,垂足為
,
,
,
是
的中點.現有下列四個結論:①
;②四邊形
的面積等于
;③
;④
.其中正確結論的個數為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com