精英家教網 > 初中數學 > 題目詳情

【題目】自從湖南與歐洲的“湘歐快線”開通后,我省與歐洲各國經貿往來日益頻繁,某歐洲客商準備在湖南采購一批特色商品,經調查,16 000元采購A型商品的件數是用7 500元采購B型商品的件數的2,一件A型商品的進價比一件B型商品的進價多10

(1)求一件A,B型商品的進價分別為多少元?

(2)若該歐洲客商購進A,B型商品共250件進行試銷,其中A型商品的件數不大于B型的件數且不小于80,已知A型商品的售價為240/,B型商品的售價為220/,且全部售出設購進A型商品m,求該客商銷售這批商品的利潤vm之間的函數解析式,并寫出m的取值范圍;

(3)(2)的條件下,歐洲客商決定在試銷活動中每售出一件A型商品,就從一件A型商品的利潤中捐獻慈善資金a,求該客商售完所有商品并捐獻慈善資金后獲得的最大收益

【答案】(1)一件B型商品的進價為150,一件A型商品的進價為160;(2)80m125;(3)m=80,最大利潤為(18 300-80a)

【解析】試題(1)設一件B型商品的進價為x元,則一件A型商品的進價為(x+10)元.根據16000元采購A型商品的件數是用7500元采購B型商品的件數的2倍,列出方程即可解決問題;

(2)根據總利潤=兩種商品的利潤之和,列出式子即可解決問題;

(3)設利潤為w元.則w=(80﹣am+70(250﹣m)=(10﹣am+17500,分三種情形討論即可解決問題.

試題解析:解:(1)設一件B型商品的進價為x元,則一件A型商品的進價為(x+10)元.

由題意:,解得x=150,經檢驗x=150是分式方程的解

答:一件B型商品的進價為150元,一件A型商品的進價為160元.

(2)因為客商購進A型商品m件,所以客商購進B型商品(250﹣m)件.

由題意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,∴v=10m+17500(80≤m≤125);

(3)設利潤為w元.則w=(80﹣am+70(250﹣m)=(10﹣am+17500:

10﹣a>0時,wm的增大而增大,所以m=125時,最大利潤為(18750﹣125a)元.

10﹣a=0時,最大利潤為17500元.

10﹣a<0時,wm的增大而減小,所以m=80時,最大利潤為(18300﹣80a)元,a<10時,最大利潤為(18750﹣125a)元;當a=10時,最大利潤為17500元;當a>10時,最大利潤為(18300﹣80a)元

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數y=(x>0,k>0)的圖象經過點A(1,a),B(m,n)(m0),分別過A、B兩點作y軸垂線,垂足分別為D,C,且CD=

(1)求k關于n的關系式;

(2)當ABC面積為2時,求反比例函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】石獅泰禾某童裝專賣店在銷售中發現,一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節,商店決定采取適當的降價措施,以擴大銷售量,增加利潤,經市場調查發現,如果每件童裝降價1元,那么平均可多售出2件.

(1)設每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數式表示)

(2)每件童裝降價多少元時,平均每天贏利1200元.

(3)要想平均每天贏利2000元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1),已知正方形ABCD的對角線AC、BD相交于點O,EAC上一點,連接EB,過點AAM⊥BE,垂足為M,AMBD于點F

(1)求證:OEOF;

(2)如圖(2),若點EAC的延長線上,AM⊥BE于點M,交DB的延長線于點F,其他條件不變,則結論“OEOF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣3x+3x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線k≠0)上.將正方形沿x軸負方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了豐富少年兒童的業余生活,某社區要在如圖所示AB所在的直線建一圖書室,本社區有兩所學校所在的位置在點C和點D處,CAABA,DBABB,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應該建在距點A多少km處,才能使它到兩所學校的距離相等?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,OM=2,MN=6,A為射線ON上的動點,以OA為一邊作內角∠OAB=120°的菱形OABC,則BMBN的最小值為 ( )

A. B. 6 C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數;并判斷線段HG、OH、BG之間的數量關系,說明理由;

(3)連結BD、DA、AE、EB得到四邊形AEBD,在旋轉過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D兩點在半圓上,CEABE,DFABF,點PAB上的一個動點,已知AB=10,CE=4,DF=3,則PC+PD的最小值是( 。

A. 7 B. 7 C. 10 D. 8

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视