【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長.
【答案】(1)見解析;(2)
【解析】試題分析:(1)先證明四邊形AEFD是平行四邊形,再證明∠AEF=90°即可.
(2)證明△ABF是直角三角形,由三角形的面積即可得出AE的長.
試題解析:(1)證明:∵CF=BE,
∴CF+EC=BE+EC.
即EF=BC.
∵在ABCD中,AD∥BC且AD=BC,
∴AD∥EF且AD=EF.
∴四邊形AEFD是平行四邊形.
∵AE⊥BC,
∴∠AEF=90°.
∴四邊形AEFD是矩形;
(2)∵四邊形AEFD是矩形,DE=8,
∴AF=DE=8.
∵AB=6,BF=10,
∴AB2+AF2=62+82=100=BF2.
∴∠BAF=90°.
∵AE⊥BF,
∴△ABF的面積=ABAF=
BFAE.
∴AE=.
科目:初中數學 來源: 題型:
【題目】在中,射線
平分
交
于點
,點
在
邊上運動(不與點
重合),過點
作
交
于點
.
(1)如圖1,點在線段
上運動時,
平分
.
①若,
,則
_____;若
,則
_____;
②試探究與
之間的數量關系?請說明理由;
(2)點在線段
上運動時,
的角平分線所在直線與射線
交于點
.試探究
與
之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名射擊選示在10次射擊訓練中的成績統計圖(部分)如圖所示:
根據以上信息,請解答下面的問題;
選手 | A平均數 | 中位數 | 眾數 | 方差 |
甲 | a | 8 | 8 | c |
乙 | 7.5 | b | 6和9 | 2.65 |
(1)補全甲選手10次成績頻數分布圖.
(2)a= ,b= ,c= .
(3)教練根據兩名選手手的10次成績,決定選甲選手參加射擊比賽,教練的理由是什么?(至少從兩個不同角度說明理由).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】據調查,超速行駛是引發交通事故的主要原因之一,所以規定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°.(tan31°≈0.6,tan50°≈1.2,結果精確到1m)
(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,D、E為圓上兩點,C為圓外一點,且∠E+∠C=90°.
(1)求證:BC為⊙O的切線.
(2)若sinA= ,BC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,E是AB邊上一點,且∠A=∠EDF=60°,有下列結論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結論正確的個數是( )
A.3
B.4
C.1
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD、BC分別與⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,則BE+CG的長等于( )
A.13
B.12
C.11
D.10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度數;
(2)BE+CG的長;
(3)⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在平面直角坐標系xOy中,拋物線y=ax2+bx+c經過點A(3,0),B(2,﹣3),C(0,﹣3)
(1)求拋物線的表達式;
(2)設點D是拋物線上一點,且點D的橫坐標為﹣2,求△AOD的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com