精英家教網 > 初中數學 > 題目詳情

【題目】已知點A(﹣1,m),B(1,m),C(2,m+1)在同一個函數圖象上,這個函數圖象可以是( )
A.
B.
C.
D.

【答案】C
【解析】解:∵點A(﹣1,m),B(1,m),

∴A與B關于y軸對稱,故A,B錯誤;

∵B(1,m),C(2,m+1),

∴當x>0時,y隨x的增大而增大,故C正確,D錯誤.

所以答案是:C.

【考點精析】通過靈活運用坐標確定位置和函數的圖象,掌握對于平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標;函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對頂角為   ,∠BOE的鄰補角為   ;

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察一列數:1,24,8,16,我們發現,這一列數從第二項起,每一項與它前一項的比都等于2.一般地,如果一列數從第二項起,每一項與它前一項的比都等于同一個常數,這一列數就叫做等比數列,這個常數就叫做等比數列的公比.

(1)等比數列3,-12,48的第4項是______;

(2)如果一列數a1,a2,a3,a4是等比數列,且公比為q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3,則a5=_______,an=______(a1q的式子表示);

(3)一個等比數列的第2項是9,第4項是36,求它的公比.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,△ABC是等邊三角形,四邊形BDEF是菱形,其中線段DF的長與DB相等,將菱形BDEF繞點B按順時針方向旋轉,甲、乙兩位同學發現在此旋轉過程中,有如下結論.
甲:線段AF與線段CD的長度總相等;
乙:直線AF和直線CD所夾的銳角的度數不變;
那么,你認為( )

A.甲、乙都對
B.乙對甲不對
C.甲對乙不對
D.甲、乙都不對

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿其對角線AC折疊,使點B落在點B′的位置,AB′與CD交于點E,若AB=8,AD=3,則△EB′C的周長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列內容,并答題:我們知道,計算n邊形的對角線條數公式為: n(n﹣3).
如果一個n邊形共有20條對角線,那么可以得到方程
整理得n2﹣3n﹣40=0;解得n=8或n=﹣5
∵n為大于等于3的整數,∴n=﹣5不合題意,舍去.
∴n=8,即多邊形是八邊形.
根據以上內容,問:
(1)若一個多邊形共有14條對角線,求這個多邊形的邊數;
(2)A同學說:“我求得一個多邊形共有10條對角線”,你認為A同學說法正確嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一方有難八方支援,某市政府籌集了抗旱必需物資120噸打算運往災區,現有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)

車型

汽車運載量(噸/輛)

汽車運費(元/輛)

1)若全部物資都用甲、乙兩種車型來運送,需運費元,問分別需甲、乙兩種車型各幾輛?

2)為了節約運費,該市政府可以調用甲、乙、丙三種車型參與運送,已知他們的總輛數為輛,你能通過列方程組的方法分別求出幾種車型的輛數嗎?

3)求出哪種方案的運費最?最省是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題情境

1)如圖①,已知,試探究直線有怎樣的位置關系?并說明理由.

小明給出下面正確的解法:

直線的位置關系是

理由如下:

過點(如圖②所示)

所以(依據1

因為(已知)

所以

所以

所以(依據2

因為

所以(依據3

交流反思

上述解答過程中的依據1”,依據2”,依據3”分別指什么?

依據1”________________________________;

依據2”________________________________;

依據3”________________________________

類比探究

2)如圖,當、、、滿足條件________時,有

拓展延伸

3)如圖,當、、滿足條件_________時,有

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,AF平分∠CAB,交CD于點E,交BC于點F,若AF=BF,求證:△CEF是等邊三角形.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视