【題目】如圖,⊙O的半徑為2,圓心O在坐標原點,正方形ABCD的邊長為2,點A、B在第二象限,點C、D在⊙O上,且點D的坐標為(0,2),現將正方形ABCD繞點C按逆時針方向旋轉150°,點B運動到了⊙O上點B1處,點A、D分別運動到了點A1、D1處,即得到正方形A1B1C1D1(點C1與C重合);再將正方形A1B1C1D1繞點B1按逆時針方向旋轉150°,點A1運動到了⊙O上點A2處,點D1、C1分別運動到了點D2、C2處,即得到正方形A2B2C2D2(點B2與B1重合),…,按上述方法旋轉2020次后,點A2020的坐標為( )
A.(0,2)B.(2+,﹣1)
C.(﹣1﹣,﹣1﹣
)D.(1,﹣2﹣
)
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,E是BC邊上的一個動點,DF⊥AE,垂足為點F,連結CF
(1)若AE=BC
①求證:△ABE≌△DFA;②求四邊形CDFE的周長;③求tan∠FCE的值;
(2)探究:當BE為何值時,△CDF是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(x>0)的圖象經過線段OC的中點A,交DC于點E,交BC于點F.設直線EF的解析式為y2=k2x+b.
(1)求反比例函數和直線EF的解析式;
(溫馨提示:平面上有任意兩點M(x1,y1)、N(x2,y2),它們連線的中點P的坐標為( ))(2)求△OEF的面積;
(3)請結合圖象直接寫出不等式k2x -b﹣>0的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P南偏西60°方向的A處,它向東航行20海里到達燈塔P南偏西45°方向上的B處,若輪船繼續沿正東方向航行,求輪船航行途中與燈塔P的最短距離.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線過點
,
,點
為直線
下方拋物線上一動點,
為拋物線頂點,拋物線對稱軸與直線
交于點
.
(1)求拋物線的表達式與頂點的坐標;
(2)在直線上是否存在點
,使得
,
,
,
為頂點的四邊形是平行四邊形,若存在,請求出
點坐標;
(3)在軸上是否存在點
,使
?若存在,求點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B、C三個城市位置如圖所示,A城在B城正南方向180 km處,C城在B城南偏東37°方向.已知一列貨車從A城出發勻速駛往B城,同時一輛客車從B城出發勻速駛往C城,出發1小時后,貨車到達P地,客車到達M地,此時測得∠BPM=26°,兩車又繼續行駛1小時,貨車到達Q地,客車到達N地,此時測得∠BNQ=45°,求兩車的速度.(參考數據:sin37°≈,cos37°≈
,tan37°≈
,sin26°≈
,cos26°≈
,tan26°≈
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB是直徑,過點A作直線MN,且∠MAC=∠ABC.
(1)求證:MN是⊙O的切線.
(2)設D是弧AC的中點,連結BD交AC于點G,過點D作DE⊥AB于點E,交AC于點F.
①求證:FD=FG.
②若BC=3,AB=5,試求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,點
,點
在線段
上,點
在
軸上,將
沿直線
翻折,使點
與點
重合.若點
在線段
延長線上,且
,點
在
軸上,點
在坐標平面內,如果以點
為頂點的四邊形是菱形,那么點
有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com