【題目】某賓館有單人間、雙人間和三人間三種客房供游客租住,某旅行團有18人準備同時租用這三種客房共9間,且每個房間都住滿,則租房方案共有( )種.
A. 3B. 4C. 5D. 6
科目:初中數學 來源: 題型:
【題目】某校5月份舉行了八年級生物實驗考查,有A和B兩個考查實驗,規定每位學生只參加其中一個實驗的考查,并由學生自己抽簽決定具體的考查實驗,小明、小麗、小華都參加了本次考查.
(1)小麗參加實驗A考查的概率是 ;
(2)用列表或畫樹狀圖的方法求小明、小麗都參加實驗A考查的概率;
(3)他們三人都參加實驗A考查的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課題學習:矩形折紙中的數學實踐操作:折紙不僅是一項有趣的活動,也是一項益智的數學活動.數學課上,老師給出這樣一道題將矩形紙片ABCD沿對角線AC翻折,使點B落在矩形所在平面內,B'C和AD相交于點E,如圖1所示.
探素發現:
(1)在圖1中,①請猜想并證明AE和EC的數量關系;②連接B'D,請猜想并證明B'D和AC的位置關系;
(2)第1小組的同學發現,圖1中,將矩形ABCD沿對角線AC翻折所得到的圖形是軸對稱圖形.若沿對稱軸EF再次翻折所得到的圖形仍是軸對稱圖形,展開后如圖2所示,請你直接寫出該矩形紙片的長、寬之比;
(3)若將圖1中的矩形變為平行四邊形時(AB≠BC),如圖3所示,(1)中的結論①和結論②是否仍然成立,請直接寫出你的判斷.
拓展應用:
(4)在圖3中,若∠B=30°,AB=2,請您直接寫出:當BC的長度為多少時,△AB'D恰好為直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果為“A非常了解”、“B了解”、“C基本了解”三個等級,并根據調查結果制作了如下兩幅不完整的統計圖.
請根據圖中提供的信息,解答下列問題:
(1)本次調查的人數為 ;
(2)補全條形統計圖;
(3)若該市約有市民100萬人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A非常了解”的程度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著信息技術的迅猛發展,人們去商場購物的支付方式更加多樣、便捷.某校數學興趣小組設計了一份調查問卷,要求每人選且只選一種你最喜歡的支付方式.現將調查結果進行統計并繪制成如下兩幅不完整的統計圖,請結合圖中所給的信息解答下列問題:
(1)這次活動共調查了 人;在扇形統計圖中,表示“支付寶”支付的扇形圓心角的度數為 ;
(2)將條形統計圖補充完整.觀察此圖,支付方式的“眾數”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一邊長為1的正方形OABC,邊OA,OC分別在x軸,y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OB1為邊作第三個正方形OB1B2C2,照此規律作下去,則點B2019的坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了給游客提供更好的服務,某景區隨機對部分游客進行了關于“景區服務工作滿意度”的調查,并根據調查結果繪制成如下不完整的統計圖表.
滿意度 | 人數 | 所占百分比 |
非常滿意 | 12 | 10% |
滿意 | 54 | m |
比較滿意 | n | 40% |
不滿意 | 6 | 5% |
根據圖表信息,解答下列問題:
(1)本次調查的總人數為______,表中m的值為_______;
(2)請補全條形統計圖;
(3)據統計,該景區平均每天接待游客約3600人,若將“非常滿意”和“滿意”作為游客對景區服務工作的肯定,請你估計該景區服務工作平均每天得到多少名游客的肯定.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A(m,2),B(﹣3,n)兩點關于原點O對稱,反比例函數y=的圖象經過點A.
(1)求反比例函數的解析式并判斷點B是否在這個反比例函數的圖象上;
(2)點P(x1,y1)也在這個反比例函數的圖象上,﹣3<x1<m且x1≠0,請直接寫出y1的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人相約周末沿同一條路線登山,甲、乙兩人距地面的高度y(米)與登山時間x(分鐘)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題
(1)甲登山的速度是每分鐘 米;乙在A地提速時,甲距地面的高度為 米;
(2)若乙提速后,乙的速度是甲登山速度的3倍;
①求乙登山全過程中,登山時距地面的高度y(米)與登山時間x(分鐘)之間的函數解析式;
②乙計劃在他提速后5分鐘內追上甲,請判斷乙的計劃能實現嗎?并說明理由;
(3)當x為多少時,甲、乙兩人距地面的高度差為80米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com