精英家教網 > 初中數學 > 題目詳情
如圖,已知拋物線經過O(0,0),A(4,0),B(3,)三點,連接AB,過點B作BC∥軸交該拋物線于點C.

【小題1】求這條拋物線的函數關系式.
【小題2】兩個動點P、Q分別從O、A同時出發,以每秒1個單位長度的速度運動. 其中,點P沿著線段0A向A點運動,點Q沿著線段AB向B點運動. 設這兩個動點運動的時間為(秒) (0<≤2),△PQA的面積記為S.
① 求S與的函數關系式;
② 當為何值時,S有最大值,最大值是多少?并指出此時△PQA的形狀;
【小題3】是否存在這樣的值,使得△PQA是直角三角形?若存在,請直接寫出此時P、Q兩點的坐標;若不存在,請說明理由.
p;【答案】
【小題1】


 
        

  
【小題2】過B作
       4分
1) 由題意QA=t, PA=4—t 對Q作軸交x軸于F,則
      
        
               6分
        
             7分
        此時             8分
【小題3】存在,當點Q在AB上運動時,要使得是直角,必須使.  PA=2QA 即 4—t=2t.
              10分解析:
p;【解析】略
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線經過原點O和x軸上另一點A,它的對稱軸x=-2與x軸交于點C,直線y=-精英家教網2x+1經過拋物線上一點B(2,m),且與y軸.直線x=-2分別交于點D、E.
(1)求m的值及該拋物線對應的函數關系式;
(2)①判斷△CBE的形狀,并說明理由;②判斷CD與BE的位置關系;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數關系式;
(2)動點Q從點O出發,以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線經過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E,
(1)求m的值及該拋物線對應的函數關系式;
(2)求證:①CB=CE;②D是BE的中點.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線經過坐標原點,與x軸的另一個交點為A,且頂點M坐標為(1,2),
(1)求該拋物線的解析式;
(2)現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關于m的關系式;
(3)當m=2時,點Q為平移后的拋物線的一動點,是否存在這樣的⊙Q,使得⊙Q與兩坐標軸都相切?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線經過原點O和x軸上的另一點E,頂點為M(2,4),矩形ABCD的頂點A與O重合,AD,AB分別在x,y軸上,且AD=2,AB=3.
(1)求該拋物線對應的函數解析式;
(2)現將矩形ABCD以每秒1個單位長度的速度從左圖所示位置沿x軸的正方向勻速平行移動;同時AB上一動點P也以相同的速度從點A出發向B勻速運動,設它們的運動時間為t秒(0≤t≤3),直線AB與拋物線的交點為N,設多邊形PNCD的面積為S,試探究S是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.
精英家教網

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视