精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在折紙活動中,小明制作了一張△ABC紙片,D、E分別是邊AB、AC,將△ABC沿著DE折疊壓平,AA′重合,若∠A=68°,則∠1+∠2=____°.

【答案】136

【解析】

根據三角形的內角和等于180°求出∠ADE+AED,再根據翻折變換的性質可得∠ADE=ADE,AED=AED,然后利用平角等于180°列式計算即可得解.

∵∠A=68°,

∴∠ADE+AED=180°-68°=112°

∵△ABC沿著DE折疊壓平,AA′重合,

∴∠ADE=ADE,AED=AED,

∴∠1+2=180°-(AED+AED)+180°-(ADE+ADE)=360°-2×112°=136°.

故答案為:136.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】定義運算aba(1b),下面給出了關于這種運算的四個結論:

2(2)6 abba

ab0,則(aa)+(bb)2ab ab0,則a0

其中正確結論的序號是 (填上你認為所有正確結論的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】十九大報告提出了我國將加大治理環境污染的力度,還我青山綠水,其中霧霾天氣讓環保和健康問題成為焦點,為了調查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調查,根據調查統計結果,繪制了不完整的一種統計圖表.

對霧霾了解程度的統計表

對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結合統計圖表,回答下列問題:

1)統計表中:m   ,n   ;

2)請在圖1中補全條形統計圖;

3)請問在圖2所示的扇形統計圖中,D部分扇形所對應的圓心角是多少度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知梯形ABCD中,AD∥BC,∠C=90°,以CD為直徑的圓與AB相切,AB=6,求梯形ABCD的中位線長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了解八年級學習體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A、B、C、D四個等級.請根據兩幅統計圖中的信息回答下列問題:

1)本次抽樣調查共抽取了多少名學生?

2)求測試結果為C等級的學生數,并補全條形圖;

3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知∠AOB=100°

(1)如圖1,OC平分∠AOB,OD、OE分別平分∠BOC和∠AOC,求∠DOE的度數;

(2)當OC為∠AOB內任一條射線時,如圖2,OD、OE仍是∠BOC和∠AOC的平分線,此時能否求出∠DOE的度數?如果能,請你求出∠DOE的度數;

(3)當OC為∠AOB外任一條射線時,如圖3,OD、OE仍是∠BOC和∠AOC的平分線,此時能否求出∠DOE的度數?如果能,請你求出∠DOE的度數;

(4)通過上面幾個問題探求,請你用一個結論來表示.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數.

(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請你求出∠EAD與∠B、∠C之間的數列關系?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEF∥ABBCF,交ACE,過點OOD⊥BCD,下列四個結論:

①∠AOB=90°+C;AE+BF=EF;③當∠C=90°時,EF分別是AC,BC的中點;④若OD=a,CE+CF=2b,則SCEF=ab其中正確的是(  )

A. ①② B. ③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视