【題目】已知,在以O為原點的直角坐標系中,拋物線的頂點為A(1,4),且經過點B(2,3),與x軸交于C、D兩點.
(1)求直線OB的函數表達式和該拋物線的函數表達式;
(2)如圖1,點P是x軸上方的拋物線上一動點,過點P作直線PF⊥x軸于點F,交直線OB于點E.若PE=3EF,求出P點的橫坐標;
(3)如圖2,點M是拋物上的一個動點,且在直線OB的上方,過點M作x軸的平行線與直線OB交于點N,T是拋物線對稱軸上一點,當MN最大且△MDT周長最小時,直接寫出T的坐標.
【答案】(1) y=x2﹣2x+5;(2) P點的橫坐標為4﹣; (3) T的坐標為(1,3).
【解析】
(1)由B點坐標利用待定系數法可求直線OB解析式,利用頂點式可求得拋物線解析式;
(2)設P(x,x2-2x+5),則可表示出E點坐標,由PE=3EF可得到方程解答即可;
(3)當M與B關于拋物線的對稱軸對稱時,MN最大,進而得出T的坐標.
(1)設直線OB解析式為y=kx,由題意可得3=2k,解得k=1.5,
∴直線OB解析式為y=1.5x,
∵拋物線頂點坐標為(1,4),
∴可設拋物線解析式為y=a(x﹣1)2+4,
∵拋物線經過B(2,3),
∴3=a+4,解得a=1,
∴拋物線為y=x2﹣2x+5;
(2)設P(x,x2﹣2x+5),E點坐標為(x,1.5x),
∵PE=3EF,
∴x2﹣2x+5=4×1.5x,
解得:,
(不合題意,舍去)
P點的橫坐標為4﹣.
(3)當M與B關于拋物線的對稱軸對稱時,MN最大,此時B與N重合,
此時M的坐標為(0,3),
當MT垂直對稱軸時,△MDT周長最小,
此時T的坐標為(1,3).
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC,若CE=5,則BC等于( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形OABC的頂點O是原點,頂點B在y軸上,兩條對角線AC、OB的長分別是6和4,反比例函數的圖象經過點C.
(1)寫出點A的坐標,并求k的值;
(2)將菱形OABC沿y軸向下平移多少個單位長度后點A會落在該反比例函數的圖象上?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為提高節水意識,小申隨機統計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數據進行整理后,繪制成如圖所示的統計圖.(單位:升)
(1)求這7天內小申家每天用水量的平均數和中位數;
(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;
(3)請你根據統計圖中的信息,給小申家提出一條全理的節約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節約用水量.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC是邊長為8的等邊三角形,AD⊥BC于點D,DE⊥AB于點E.
(1)求證:AE=3EB
(2)若點F是AD的中點,點P是BC邊上的動點,連接PE,PF,如圖2所示,求PE+PF的最小值及此時BP的長;
(3)在(2)的條件下,連接EF,當PE+PF取最小值時,△PEF的面積是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=ax+b(a≠0)的圖象與反比例函數y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=
,點B的坐標為(m,-2).
(1)求△AHO的周長;
(2)求該反比例函數和一次函數的解析式.
【答案】(1)△AHO的周長為12;(2) 反比例函數的解析式為y=,一次函數的解析式為y=-
x+1.
【解析】試題分析: (1)根據正切函數,可得AH的長,根據勾股定理,可得AO的長,根據三角形的周長,可得答案;
(2)根據待定系數法,可得函數解析式.
試題解析:(1)由OH=3,tan∠AOH=,得
AH=4.即A(-4,3).
由勾股定理,得
AO==5,
△AHO的周長=AO+AH+OH=3+4+5=12;
(2)將A點坐標代入y=(k≠0),得
k=-4×3=-12,
反比例函數的解析式為y=;
當y=-2時,-2=,解得x=6,即B(6,-2).
將A、B點坐標代入y=ax+b,得
,
解得,
一次函數的解析式為y=-x+1.
考點:反比例函數與一次函數的交點問題.
【題型】解答題
【結束】
25
【題目】如圖,已知點A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點D,連接CD.
求證:①AB=AD;
②CD平分∠ACE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=﹣x+4與y軸、x軸分別交于
E、F,邊長為2的等邊△ABC,邊BC在x軸上,將此三角形沿著x軸的正方向平移,在平移過程中,得到△A1B1C1,當點B1與原點重合時,解答下列問題:
(1)求出點A1的坐標,并判斷點A1是否在直線l上;
(2)求出邊A1C1所在直線的解析式;
(3)在坐標平面內找一點P,使得以P、A1、C1、F為頂點的四邊形是平行四邊形,請直接寫出P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當x任取一值時,x對應的函數值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當x=1時,y1=0,y2=4,y1<y2,此時M=0.
下列判斷:
①當x>0時,y1>y2;
②當x<0時,x值越大,M值越;
③使得M大于2的x值不存在;
④使得M=1的x值是或
.其中正確的個數是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com