【題目】小力在電腦上設計了一個有理數運算程序:輸入a,加※鍵,再輸入b,得到運算a※b=a2-b2-[2(a-1)-]÷(a-b).
(1)求(-2)※的值;
(2)小華在運用此程序計算時,屏幕顯示“該程序無法操作”,你猜小華在輸入數據時,可能出現什么情況?為什么?
科目:初中數學 來源: 題型:
【題目】在下列解題過程的空白處填上適當的內容(推理的理由或數學表達式)
如圖,在△ABC中,已知∠ADE=∠B,∠1=∠2,FG⊥AB于點G.
求證CD⊥AB.
證明:∵∠ADE=∠B(已知),
∴ ( ),
∵ DE∥BC(已證),
∴ ( ),
又∵∠1=∠2(已知),
∴ ( ),
∴CD∥FG( ),
∴ (兩直線平行同位角相等),
∵ FG⊥AB(已知),
∴∠FGB=90°(垂直的定義).
即∠CDB=∠FGB=90°,
∴CD⊥AB. (垂直的定義).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(0,2),B(﹣2,0),點D是x軸上一個動點,以AD為一直角邊在一側作等腰直角三角形ADE,∠DAE=90°,若△ABD為等腰三角形時點E的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△DEC的一個頂點D在△ABC內部,且∠CAD+∠CBD=90°.
(1)如圖1,若△ABC與△DEC均為等腰直角三角形,且∠ABC=∠DEC=90°,連接BE,求證:△ADC∽△BEC.
(2)如圖2,若∠ABC=∠DEC=90°, =
=n,BD=1,AD=2,CD=3,求n的值;
(3)如圖3,若AB=BC,DE=EC,且∠ABC=∠DEC=135°,BD=a,AD=b,CD=c,請直接寫出a、b、c三者滿足的等量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料: 在數學課上,老師提出如下問題:
小敏的作法如下:
老師說:“小敏的作法正確.”依其作法,先得出ABCD,再得出矩形ABCD,請回答:以上兩條結論的依據是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某生態示范村種植基地計劃用90畝~120畝(含90畝與120畝)的土地種植一批葡萄,原計劃總產量要達到36萬斤.設原計劃種植畝數y(畝)、平均畝產量x(萬斤)
(1)列出y(畝)與x(萬斤)之間的函數關系式,并求自變量x的取值范圍;
(2)為了滿足市場需求,現決定改良葡萄品種.改良后平均每畝產量是原計劃的1.5倍,總產量比原計劃增加了9萬斤,種植畝數減少了20畝,原計劃和改良后的平均每畝產量各是多少萬斤?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高.點O是AC中點,延長DO到E,使OE=OD,連接AE,CE.
(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com