【題目】如圖,在中
,
,
點P從點B出發,沿折線
運動,當它到達點A時停止,設點P運動的路程為
點Q是射線CA上一點,
,連接
設
,
.
求出
,
與x的函數關系式,并注明x的取值范圍;
補全表格中
的值;
x | 1 | 2 | 3 | 4 | 6 |
______ | ______ | ______ | ______ | ______ |
以表中各組對應值作為點的坐標,在直角坐標系內描出相應的點,并在x的取值范圍內畫出的函數圖象:
在直角坐標系內直接畫出
函數圖象,結合
和
的函數圖象,求出當
時,x的取值范圍.
科目:初中數學 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=9,BC=12.點Q是線段AC上的一個動點,過點Q作AC的垂線交射線AB于點P.當△PQB為等腰三角形時,則AP的長為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點A、B在反比例函數y=(k>0,x>0)的圖象上,橫坐標分別為1,4,對角線BD∥x軸.若菱形ABCD的面積為
,則k的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在菱形中,
.
(1)如圖1,點為線段
的中點,連接
,
.若
,求線段
的長.
(2)如圖2,為線段
上一點(不與
,
重合),以
為邊向上構造等邊三角形
,線段
與
交于點
,連接
,
,
為線段
的中點.連接
,
判斷
與
的數量關系,并證明你的結論.
(3)在(2)的條件下,若,請你直接寫出
的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數解析式為y=(m-2)
(1)若函數為正比例函數,試說明函數y隨x增大而減小
(2)若函數為二次函數,寫出函數解析式,并寫出開口方向
(3)若函數為反比例函數,寫出函數解析式,并說明函數在第幾象限
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司準備投資開發A、B兩種新產品,通過市場調研發現:如果單獨投資A種產品,則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數關系:yA=kx;如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數關系:yB=ax2+bx.根據公司信息部的報告,yA、yB(萬元)與投資金額x(萬元)的部分對應值(如下表)
(1)求正比例函數和二次函數的解析式;
(2)如果公司準備投資20萬元同時開發A、B兩種新產品,請你設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AB=4,AD=6,∠ABC的平分線交AD于點E,交CD的延長線于點F.
(1)求DF的長;
(2)點H為CD的中點,連接AH交BF于點G,點G是BF的中點嗎?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com