【題目】根據道路管理規定,在廣州某段筆直公路上行駛的車輛,限速40千米/時;已知交警測速點到該公路
點的距離為
米,
,
(如圖所示),現有一輛汽車由
往
方向勻速行駛,測得此車從
點行駛到
點所用的時間為2秒.
(1)求測速點到該公路的距離.
(2)通過計算判斷此車是否超速.(參考數據:,
,
)
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=x+4的圖象與反比例函數y=(k為常數且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求a,k的值及點B的坐標;
(2)若點P在x軸上,且S△ACP=S△BOC,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線.
(1)拋物線的對稱軸為直線________.
(2)當時,函數值
的取值范圍是
,求
和
的值.
(3)當時,解決下列問題.
①拋物線上一點到
軸的距離為6,求點
的坐標.
②將該拋物線在間的部分記為
,將
在直線
下方的部分沿
翻折,其余部分保持不變,得到的新圖象記為
,設
的最高點、最低點的縱坐標分別為
、
,若
,直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠有甲種原料69千克,乙種原料52千克,現計劃用這兩種原料生產A,B兩種型號的產品共80件,已知每件A型號產品需要甲種原料0.6千克,乙種原料0.9千克;每件B型號產品需要甲種原料1.1千克,乙種原料0.4千克.請解答下列問題:
(1)該工廠有哪幾種生產方案?
(2)在這批產品全部售出的條件下,若1件A型號產品獲利35元,1件B型號產品獲利25元,(1)中哪種方案獲利最大?最大利潤是多少?
(3)在(2)的條件下,工廠決定將所有利潤的25%全部用于再次購進甲、乙兩種原料,要求每種原料至少購進4千克,且購進每種原料的數量均為整數.若甲種原料每千克40元,乙種原料每千克60元,請直接寫出購買甲、乙兩種原料之和最多的方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線形的拱橋,當拱頂離水面3m時,水面寬6m.
(1)建立如圖所示的平面直角坐標系,求拋物線的解析式;
(2)如果水面上升1m,則水面寬度減少多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=CB=2,以BC為邊向外作正方形BCDE,動點M從A點出發,以每秒1個單位的速度沿著A→C→D的路線向D點勻速運動(M不與A、D重合);過點M作直線l⊥AD,l與路線A→B→D相交于N,設運動時間為t秒:
(1)填空:當點M在AC上時,BN= (用含t的代數式表示);
(2)當點M在CD上時(含點C),是否存在點M,使△DEN為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由;
(3)過點N作NF⊥ED,垂足為F,矩形MDFN與△ABD重疊部分的面積為S,求S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD中,DE平分∠ADC交BC邊于點E,P為DE上的一點(PE<PD),PM⊥PD,PM交AD邊于點M.
(1)若點F是邊CD上一點,滿足PF⊥PN,且點N位于AD邊上,如圖1所示.
求證:①PN=PF;②DF+DN=DP;
(2)如圖2所示,當點F在CD邊的延長線上時,仍然滿足PF⊥PN,此時點N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數量關系,并加以證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com