試題分析:(1)如果延長BA交EF于點G,那么BG⊥EF,∠CAE=180°-∠BAC-∠EAG,∠BAC的度數以及確定,只要求出∠GAE即可.直角三角形GAE中∠E的度數已知,那么∠EAG的度數就能求出來了,∠CAE便可求出.
(2)求樹折斷前的高度,就是求AC和CD的長,如果過點A作AH⊥CD,垂足為H.有∠CDA=60°,通過構筑的直角三角形AHD和ACH便可求出AD、CD的值.
(1)延長BA交EF于點G

在Rt△AGE中,∠E=23°,
∴∠GAE=67°.
又∵∠BAC=38°,
∴∠CAE=180°-67°-38°=75°.
(2)作AH⊥CD,垂足為H.
∵AD=4,∠HAD=30°
∴HD=2,AH=2

∠CAH=45°
∴CH=2
∴AC=2
∴AB=AC+CD=2

+2

+2=10.2

10(米).
答:這棵大樹折斷前高約10米.
點評:本題是將實際問題轉化為直角三角形中的數學問題,可通過作輔助線構造直角三角形,再把條件和問題轉化到這個直角三角形中,使問題解決.