精英家教網 > 初中數學 > 題目詳情

【題目】如果一個多邊形的內角和等于1800°,則這個多邊形是_____邊形;如果一個n邊形每一個內角都是135°,則n=_____;如果一個n邊形每一個外角都是36°,則n=_____

【答案】十二, 8, 10.

【解析】

設這個多邊形是n邊形,它的內角和可以表示成(n-2)180°,就得到關于n的方程,求出邊數n;根據內角是135°,可得相應外角的度數,根據多邊形的外角和進行求解即可得n;由每一個外角都是36°,根據多邊形的外角和是360°,即可求解.

這個正多邊形的邊數是n,

則(n-2)180°=1800°,

解得:n=12,

則這個正多邊形是12;

如果一個n邊形每一個內角都是135°,

∴每一個外角=45°,

n==8,

如果一個n邊形每一個外角都是36°,

n==10,

故答案為:十二,8,10.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,C為線段AB的中點,點D在線段CB上.

(1)圖中共有 條線段.

(2)圖中AD=AC+CD,BC=AB﹣AC,類似地,請你再寫出兩個有關線段的和與差的關系式:

; .

(3)若AB=8,DB=1.5,求線段CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD平分∠BAC,∠EAD=∠EDA.

(1)∠EAC與∠B相等嗎?為什么?

(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在Rt△OAB中,∠AOB=90°,已知AB= ,AO:BO=1:3,將△OAB繞點O按順時針方向旋轉90°得到△ODC,如圖1建立平面直角坐標系.

(1)求A,B,C三點坐標;
(2)若拋物線y=ax2+bx+c(a≠0)經過A,B,C三點(如圖2),點P是拋物線的頂點,試判定△PCD的形狀,并說明理由:

(3)在(2)的拋物線上,且在第一象限中,是否存在點Q,使SQCD=SOCD?若存在,請求點Q的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,C為半圓內一點,O為圓心,直徑AB長為2cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉至△B′OC′,點C′在OA上,則邊BC掃過區域(圖中陰影部分)的面積為cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小明從點A出發,前進10m后向右轉20°,再前進10m后又向右轉20°,這樣一直下去,直到他第一次回到出發點A為止,他所走的路徑構成了一個多邊形.

(1)小明一共走了多少米?

(2)這個多邊形的內角和是多少度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在⊙O中,AB是弦,半徑OC⊥AB,垂足為點D,要使四邊形OACB為菱形,還需要添加一個條件,這個條件可以是(
A.AD=BD
B.OD=CD
C.∠CAD=∠CBD
D.∠OCA=∠OCB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程:
(1)2x2﹣4x﹣3=0(配方法)
(2)x(x+2)=2+x.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】.如圖 1,ABCD,直線 EF AB 于點 E,交 CD 于點 F,點 G CD 上,點 P在直線 EF 左側,且在直線 AB CD 之間,連接 PEPG.

(1) 求證: EPG=AEPPGC;

(2) 連接 EG,若 EG 平分∠PEFAEP+ PGE=110°,PGC=EFC,求∠AEP 的度數.

(3) 如圖 2,若 EF 平分∠PEBPGC 的平分線所在的直線與 EF 相交于點 H,則∠EPG 與∠EHG之間的數量關系為      .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视