精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系中,對于平面內任一點(m,n), 規定以下兩種變換:
⑴f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
⑵g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).
按照以上變換有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(2,﹣3)]=

【答案】(﹣2,﹣3)
【解析】解:g[f(2,﹣3)]=g(2,3)=(﹣2,﹣3), 所以答案是:(﹣2,﹣3).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知函數.

(1)指出函數圖象的開口方向是 ,對稱軸是 ,頂點坐標為 ;

(2)x 時,yx的增大而減小;

(3)怎樣移動拋物線就可以得到拋物線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸上,反比例函數(x0)的圖象經過菱形對角線的交點A,且與邊BC交于點F,點A的坐標為(4,2).

(1)求反比例函數的表達式;

(2)求點F的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數y= (x>0)的圖象經過點C,交AB于點D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)連接OC,若BD=BC,求OC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,點C的坐標為(0,3),點A在x軸的負半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數y=kx+b的圖象過點D和M,反比例函數y=的圖象經過點D,與BC的交點為N.

(1)求反比例函數和一次函數的解析式;

(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,點P為∠MON的平分線上一點,以P點為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,如果∠APB繞點P旋轉時始終滿足OA·OBOP2,我們就把∠APB叫作∠MON的智慧角.

(1)如圖②,已知∠MON=90°,點P為∠MON的平分線上一點,以點P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,且∠APB=135°,求證:∠APB是∠MON的智慧角;

(2)如圖①,已知∠MONα(0°<α<90°),OP=2,若∠APB是∠MON的智慧角,連接AB,用含α的式子分別表示∠APB的度數和△AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,點E是邊AD的中點,連接BE并延長交CD的延長線于點F,交AC于點G.

(1)FD2 ,求線段DC的長;

(2)求證:EF·GBBF·GE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為( 。

A. 1 B. C. 2 D. +1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點M(2,﹣3)關于y軸對稱的點的坐標為( )

A. (3,2) B. (3,﹣2) C. (﹣2,﹣3) D. (﹣3,2)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视