【題目】問題引入:
(1)如圖①,在△ABC中,點O是∠ABC和∠ACB平分線的交點,若∠A=α,則∠BOC=(用α表示);如圖②,∠CBO= ∠ABC,∠BCO=
∠ACB,∠A=α,則∠BOC=(用α表示)拓展研究:
(2)如圖③,∠CBO= ∠DBC,∠BCO=
∠ECB,∠A=α,請猜想∠BOC=(用α表示),并說明理由.
類比研究:
(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點O,∠CBO= ∠DBC,∠BCO=
∠ECB,∠A=α,請猜想∠BOC= .
【答案】
(1)90°+ α;120°+
α
(2)120°﹣ α
(3)
【解析】解:(1)如圖①,∵∠ABC與∠ACB的平分線相交于點O,∴∠OBC= ∠ABC,∠OCB=
∠ACB,∴∠OBC+∠OCB=
(∠ABC+∠ACB),
在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣ (∠ABC+∠ACB)=180°﹣
(180°﹣∠A)=90°+
∠A=90°+
α;
如圖②,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣ (∠ABC+∠ACB)=180°﹣
(180°﹣∠A)=120°+
∠A=120°+
α;(2)如圖③,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣
(∠DBC+∠ECB)=180°﹣
(∠A+∠ACB+∠A+ABC)=180°﹣
(∠A+180°)=120°﹣
α;(3)在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣
(∠DBC+∠ECB)=180°﹣
(∠A+∠ACB+∠A+ABC)=180°﹣
(∠A+180°)=
﹣
α.
所以答案是90°+ α,120°+
α;120°﹣
α;
﹣
α.
【考點精析】根據題目的已知條件,利用角的運算的相關知識可以得到問題的答案,需要掌握角之間可以進行加減運算;一個角可以用其他角的和或差來表示.
科目:初中數學 來源: 題型:
【題目】(11分)陽泉同學參加周末社會實踐活動,到“富樂花鄉”蔬菜大棚中收集到20株西紅柿秧上小西紅柿的個數:32 39 45 55 60 54 60 28 56 41 51 36 44 46 40 53 37 47 45 46
(1)前10株西紅柿秧上小西紅柿個數的平均數是 ,中位數是 ,眾數是 ;
(2)若對這20個數按組距8進行分組,請補全頻數分布表及頻數分布直方圖:
個數分組 | 28≤x<36 | 36≤x<44 | 44≤x<52 | 52≤x<60 | 60≤x<68 |
頻數 | 2 | 2 |
(3)通過頻數分布直方圖試分析此大棚中西紅柿的長勢。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD的外側,作兩個等邊三角形ADE和DCF,連接AF,BE
(1)請判斷:AF與BE的數量關系是 , 位置關系是 .
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變為“兩個等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予說明
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】公園內兩條小河MO、NO在O處匯合,如圖所示,兩河形成的平地上要建一個小百貨店,使小百貨店到兩岸邊距離相等,到兩河交匯處距離300米,百貨店的位置該怎樣確定?請你按10000:1的比例,在圖中確定百貨店的位置,并估算一下,它到河邊的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當AB=2,AD=3 時,求線段DH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于點E,F,且∠MAN始終保持45°不變.
(1)求證: =
;
(2)求證:AF⊥FM;
(3)請探索:在∠MAN的旋轉過程中,當∠BAM等于多少度時,∠FMN=∠BAM?寫出你的探索結論,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD內作∠EAF=45°,AE交BC于點E,AF交CD于點F,連接EF,過點A作AH⊥EF,垂足為H.
(1)如圖2,將△ADF繞點A順時針旋轉90°得到△ABG.
①求證:△AGE≌△AFE;
②若BE=2,DF=3,求AH的長.
(2)如圖3,連接BD交AE于點M,交AF于點N.請探究并猜想:線段BM,MN,ND之間有什么數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度數;
(2)延長AC至E,使CE=AC,求證:DA=DE.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com