【題目】如圖,在△ABC中,AC邊的垂直平分線DM交AC于D,BC邊的垂直平分線EN交BC于E,DM與EN相交于點F.
(1)若△CMN的周長為20cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數.
【答案】(1)20cm;(2)40°
【解析】
(1)根據垂直平分線的性質可求的AB的長等于△CMN得周長;
(2)根據垂直的性質可知∠CDF=∠CEF=90°,然后根據四邊形的內角和求得∠ACB=110°,再根據三角形的內角和求得∠A+∠B=70°,最后根據垂等腰三角形的性質可求得結論.
解:(1)∵DM垂直平分AC,
∴AM=CM,
∵EN垂直平分BC,∴BN=CN,
∴C△CMN=CM+CN+MN= AM+BN+MN=AB=20cm.
(2)∵DM⊥AC,EN⊥BC,
∴∠CDF=∠CEF=90°,
∵∠MFN=70°,
∴∠ACB=110°,
∴∠A+∠B=70°,
∵AM=CM,BN=CN,
∴∠A=∠ACM,∠B=∠BCN,
∴∠ACM +∠BCN =70°,
∴∠MCN=110°-70°=40°.
科目:初中數學 來源: 題型:
【題目】若四邊形ABCD∽四邊形A′B′C′D′,AB=6,A′B′=8,∠A=45°,B′C′=8,CD=4,則下列說法錯誤的是( )
A. ∠A′=45°
B. 四邊形A′B′C′D′與四邊形ABCD的相似比為
C. BC=6
D. C′D′=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖.在不等邊△ABC中,PM⊥AB,垂足為M,PN⊥AC,垂足為N,且PM=PN,Q在AC上,PQ=QA,下列結論.①AN=AM,②QP∥AM,③△BMP≌△QNP,其中正確的是( )
A.①②③B.①②C.②③D.①
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調查,并將調查結果繪制成了如下兩幅不完整的統計圖,請根據統計圖回答下列問題:
(1)這次被調查的學生共有 人.
(2)請將統計圖2補充完整.
(3)統計圖1中B項目對應的扇形的圓心角是 度.
(4)已知該校共有學生3600人,請根據調查結果估計該校喜歡健美操的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知□ABCD,延長AB到E使BE=AB,連接BD,ED,EC,若ED=AD.
(1)求證:四邊形BECD是矩形;
(2)連接AC,若AD=4,CD= 2,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為的正方形組成的網格中,
的頂點均在格點上,點
、
的坐標分別是
,
,
關于
軸對稱的圖形為
.
畫出
并寫出點
的坐標為________;
寫出
的面積為________;
點
在
軸上,使
的值最小,寫出點
的坐標為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請在括號內填寫理由.
如圖所示,已知∠1=∠2,∠B=∠C,可證明AB∥CD,理由如下:
∵∠1=∠2(已知),且∠1=∠4(對頂角相等)
∴∠2=∠4(等量代換)
∴______∥_______(_______)
∴∠______=∠3(________),又∵∠B=∠C(已知),
∴∠3=∠B(等量代換)
∴AB∥CD(__________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在四邊形ABCD中,∠F為四邊形ABCD的∠ABC的平分線及外角∠DCE的平分線所在的直線構成的銳角,若∠A=α,∠D=β,
(1)如圖①,當α+β>180°時,∠F=____(用含α,β的式子表示);
(2)如圖②,當α+β<180°時,請在圖②中,畫出∠F,且∠F=___(用含α,β的式子表示);
(3)當α,β滿足條件___時,不存在∠F.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com