【題目】如圖,二次函數y=ax2+bx的圖象經過點A(2,4)與B(6,0).
(1)求a,b的值;
(2)點C是該二次函數圖象上A,B兩點之間的一動點,橫坐標為x(2<x<6),寫出四邊形OACB的面積S關于點C的橫坐標x的函數表達式,并求S的最大值.
【答案】
(1)
解:將A(2,4)與B(6,0)代入y=ax2+bx,
得 ,解得:
;
(2)
解:如圖,
過A作x軸的垂直,垂足為D(2,0),連接CD,過C作CE⊥AD,CF⊥x軸,垂足分別為E,F,
S△OAD= ODAD=
×2×4=4;
S△ACD= ADCE=
×4×(x﹣2)=2x﹣4;
S△BCD= BDCF=
×4×(﹣
x2+3x)=﹣x2+6x,
則S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,
∴S關于x的函數表達式為S=﹣x2+8x(2<x<6),
∵S=﹣x2+8x=﹣(x﹣4)2+16,
∴當x=4時,四邊形OACB的面積S有最大值,最大值為16
【解析】(1)把A與B坐標代入二次函數解析式求出a與b的值即可;(2)如圖,過A作x軸的垂直,垂足為D(2,0),連接CD,過C作CE⊥AD,CF⊥x軸,垂足分別為E,F,分別表示出三角形OAD,三角形ACD,以及三角形BCD的面積,之和即為S,確定出S關于x的函數解析式,并求出x的范圍,利用二次函數性質即可確定出S的最大值,以及此時x的值.此題考查了待定系數法求二次函數解析式,以及二次函數的最值,熟練掌握二次函數的性質是解本題的關鍵.
【考點精析】認真審題,首先需要了解二次函數的最值(如果自變量的取值范圍是全體實數,那么函數在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a).
科目:初中數學 來源: 題型:
【題目】如圖,在△PAB中,PA=PB,M,N,K分別是PA,PB,AB上的點,且AM=BK,BN=AK,若∠MKN=44°,則∠P的度數為( 。
A.44°
B.66°
C.88°
D.92°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙P的半徑為5,A、B是圓上任意兩點,且AB=6,以AB為邊作正方形ABCD(點D、P在直線AB兩側).若AB邊繞點P旋轉一周,則CD邊掃過的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數,abc≠0)與直線l都經過y軸上的一點P,且拋物線L的頂點Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關系.此時,直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.
(1)若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關系,求m,n的值;
(2)若某“路線”L的頂點在反比例函數y= 的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;
(3)當常數k滿足 ≤k≤2時,求拋物線L:y=ax2+(3k2﹣2k+1)x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的12×12網格中,給出了四邊形ABCD的兩條邊AB與BC,且四邊形ABCD是一個軸對稱圖形,其對稱軸為直線AC.
(1)試在圖中標出點D,并畫出該四邊形的另兩條邊;
(2)將四邊形ABCD向下平移5個單位,畫出平移后得到的四邊形A′B′C′D′.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,一次函數 的圖象是直線l1 , l1與x軸、y軸分別相交于A、B兩點.直線l2過點C(a,0)且與直線l1垂直,其中a>0.點P、Q同時從A點出發,其中點P沿射線AB運動,速度為每秒4個單位;點Q沿射線AO運動,速度為每秒5個單位.
(1)寫出A點的坐標和AB的長;
(2)當點P、Q運動了多少秒時,以點Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小亮從家步行到公交車站臺,等公交車去學校.圖中的折線表示小亮的行程s(km)與所花時間t(min)之間的函數關系.下列說法錯誤的是( )
A.他離家8km共用了30min
B.他等公交車時間為6min
C.他步行的速度是100m/min
D.公交車的速度是350m/min
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知O(0,0)、A(4,0)、B(4,3).動點P從O點出發,以每秒3個單位的速度,沿△OAB的邊OA、AB、BO作勻速運動;動直線l從AB位置出發,以每秒1個單位的速度向x軸負方向作勻速平移運動.若它們同時出發,運動的時間為t秒,當點P運動到O時,它們都停止運動.
(1)當P在線段OA上運動時,求直線l與以P為圓心、1為半徑的圓相交時t的取值范圍;
(2)當P在線段AB上運動時,設直線l分別與OA、OB交于C、D,試問:四邊形CPBD是否可能為菱形?若能,求出此時t的值;若不能,請說明理由,并說明如何改變直線l的出發時間,使得四邊形CPBD會是菱形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com