【題目】已知:順次連接矩形各邊的中點,得到一個菱形,如圖①;再順次連接菱形各邊的中點,得到一個新的矩形.如圖②;然后順次連接新的矩形各邊的中點,得到一個新的菱形,如圖③;如此反復操作下去,則第3個圖形中直角三角形的個數有______個,第2018個圖形中直角三角形的個數有______個.
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=﹣x2+bx的圖象與x軸的正半軸交于點A(4,0),過A點的直線與y軸的正半軸交于點B,與二次函數的圖象交于另一點C,過點C作CH⊥x軸,垂足為H.設二次函數圖象的頂點為D,其對稱軸與直線AB及x軸分別交于點E和點F.
(1)求這個二次函數的解析式;
(2)如果CE=3BC,求點B的坐標;
(3)如果△DHE是以DH為底邊的等腰三角形,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,由邊長均為1個單位的小正方形組成的網格圖中,點都在格點上。
(1)的面積為__________________________;
(2)以為邊畫出一個與
全等的三角形,并進一步探究:滿足條件的三角形可以作出_____;
(3)在直線上確定點
,使
的長度最短.(畫出示意圖,并標明點
的位置即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環境,某開發區綜合治理指揮部決定購買A,B兩種型號的污水處理設備共10臺.已知用90萬元購買A型號的污水處理設備的臺數與用75萬元購買B型號的污水處理設備的臺數相同,每臺設備價格及月處理污水量如下表所示:
污水處理設備 | A型 | B型 |
價格(萬元/臺) | m | m-3 |
月處理污水量(噸/臺) | 220 | 180 |
(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個四邊形是平行四邊形的條件共有
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(1,0),點B(0, ),把△ABO繞點O順時針旋轉,得A′B′O,記旋轉角為α.
(Ⅰ)如圖①,當α=30°時,求點B′的坐標;
(Ⅱ)設直線AA′與直線BB′相交于點M.
如圖②,當α=90°時,求點M的坐標;
②點C(﹣1,0),求線段CM長度的最小值.(直接寫出結果即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,將△ABC繞點C逆時針旋轉,旋轉后的圖形是△A′B′C,點A的對應點A′落在中線AD上,且點A′是△ABC的重心,A′B′與BC相交于點E,那么BE:CE= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com