【題目】如圖,在四邊形ABCD中,AD⊥CD,BC⊥CD,E為CD的中點,連接AE,BE,BE⊥AE,延長AE交BC的延長線于點F。
證明:(1)FC=AD;
(2)AB=BC+AD。
【答案】(1)見解析;(2)見解析
【解析】
(1)根據AD∥BC可知∠ADC=∠ECF,再根據E是CD的中點可求出△ADE≌△FCE,根據全等三角形的性質即可解答.
(2)根據線段垂直平分線的性質判斷出AB=BF即可.
(1)∵AD∥BC(已知),
∴∠ADC=∠ECF(兩直線平行,內錯角相等),
∵E是CD的中點(已知),
∴DE=EC(中點的定義).
∵在△ADE與△FCE中,
,
∴△ADE≌△FCE(ASA),
∴FC=AD(全等三角形的性質).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF(全等三角形的對應邊相等),
∴BE是線段AF的垂直平分線,
∴AB=BF=BC+CF,
∵AD=CF(已證),
∴AB=BC+AD(等量代換).
科目:初中數學 來源: 題型:
【題目】已知直線 l1 經過點 A(5,0)和點 B(,﹣5)
(1)求直線 l1 的表達式;
(2)設直線 l2 的解析式為 y=﹣2x+2,且 l2 與 x 軸交于點 D,直線 l1 交 l2 于點 C, 求△CAD 的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校某次外出游學活動分為三類,因資源有限,七年級2班分配到25個名額,其中甲類4個、乙類11個、丙類10個,已知該班有50名學生,班主任準備了50個簽,其中甲類、乙類、丙類按名額設置、25個空簽,采取抽簽的方式來確定名額分配,請解決下列問題
(1)該班小明同學恰好抽到丙類名額的概率是多少?
(2)該班小麗同學能有幸去參加游學活動的概率是多少?
(3)后來,該班同學強烈呼吁名額太少,要求抽到甲類的概率要達到20%,則還要爭取甲類名額多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b的圖象與x軸交于點A(﹣1,0),與反比例函數y= 在第一象限內的圖象交于點B(
,n).連接OB,若S△AOB=1.
(1)求反比例函數與一次函數的關系式;
(2)直接寫出不等式組 的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ACB中,∠ACB=90°,CE是△ACB的中線,分別過點A、點C作CE和AB的平行線,交于點D.
(1)求證:四邊形ADCE是菱形;
(2)若CE=4,且∠DAE=60°,求△ACB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將矩形OABC如圖放置,O為原點.若點A(﹣1,2),點B的縱坐標是,則點C的坐標是( 。
A. (4,2) B. (2,4) C. (,3) D. (3,
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com