【題目】如圖,已知的平分線與
的垂直平分線相交于點
,
,
,垂足分別為
,
,
,
,則
的長為__________.
【答案】
【解析】
連接DC、DB,根據中垂線的性質即可得到DB=DC,根據角平分線的性質即可得到DE=DF,從而即可證出△DEB≌DFC,從而得到BE=CF,再證△AED≌△AFD,即可得到AE=AF,最后根據,
即可求出BE.
解:如圖所示,連接DC、DB,
∵DG垂直平分BC
∴DB=DC
∵AD平分,
,
∴DE=DF,∠DEB=∠DFC=90°
在Rt△DEB和Rt△DFC中,
∴Rt△DEB≌Rt△DFC
∴BE=CF
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD
∴AE=AF
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE
∵,
∴BE=(AB-AC)=1.5.
故答案為:1.5.
科目:初中數學 來源: 題型:
【題目】對于拋物線.
(1)它與x軸交點的坐標為 ,與y軸交點的坐標為 ,頂點坐標為 ;
(2)在坐標系中利用描點法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列問題:若關于x的一元二次方程(t為實數)在
<x<
的范圍內有解,則t的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
探究發現
△ABC中,∠B=2∠C,經過兩次折疊,∠BAC是不是△ABC的好角? (填“是”或“不是”).
小麗經過三次折疊發現了∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為 .
根據以上內容猜想:若經過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為 .
應用提升
(3)小麗找到一個三角形,三個角分別為15°、60°、105°,發現60°和105°的兩個角都是此三角形的好角.
請你完成,如果一個三角形的最小角是4°,試求出三角形另外兩個角的度數,使該三角形的三個角均是此三角形的好角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(4,0),點B(0,6),點P是直線AB上的一個動點,已知點P的坐標為(m,n).
(1)當點P在線段AB上時(不與點A、B重合)
①當m=2,n=3時,求△POA的面積.
②記△POB的面積為S,求S關于m的函數解析式,并寫出定義域.
(2)如果S△BOP:S△POA=1:2,請直接寫出直線OP的函數解析式.(本小題只要寫出結果,不需要寫出解題過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:關于x的二次函數的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發,以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發,以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形中,
,
,點
從點
出發,以
的速度沿
向點
運動,設點
的運動時間為
秒:
(1)________
;(用的代數式表示)
(2)當為何值時,
≌
;
(3)當點從點
開始運動,同時,點
從點
出發,以
的速度沿
向點
運動,是否存在這樣的
值,使得
與
全等?若存在,請求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為2,AD是BC邊上的中線,M是AD上的動點,E是邊AC的中點,則EM+CM的最小值為( )
A.1B.12 C.3 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=110°,則α等于( )
A. 20° B. 30° C. 40° D. 50°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖已知在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE、PF分別交AB和AC于點E、F,給出以下五個結論正確的個數有( 。
①AE=CF②∠APE=∠CPF ③△BEP≌△AFP④△EPF是等腰直角三角形⑤當∠EPF在△ABC內繞頂點P旋轉時(點E不與A、B重合),S四邊形AEPF=S△ABC.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com