【題目】如圖,在△ABC中,AB=AC,∠ABC=70°,以B為圓心,任意長為半徑畫弧交AB,BC于點E,F,再分別以點E,F為圓心、以大于EF長為半徑畫弧,兩弧交于點P,作射線BP交AC于點D,則∠BDC為( 。┒龋
A. 65 B. 75 C. 80 D. 85
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數(k<0)的圖像經過點A(
,m),過點A作AB⊥x軸于點,且△AOB的面積為
.
(1)求k和m的值;
(2)若一次函數y=ax+1的圖像經過點A,并且與x軸相交于點C,求∠ACO的度數及的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在一次數學興趣小組活動中,進行了如下探索活動.
問題原型:如圖(1),在矩形ABCD中,AB=6,AD=8,P、Q分別是AB、AD邊的中點,以AP、AQ為鄰邊作矩形APEQ,連接CE,則CE的長為 (直接填空)
問題變式:(1)如圖(2),小明讓矩形APEQ繞著點A逆時針旋轉至點E恰好落在AD上,連接CE、DQ,請幫助小明求出CE和DQ的長,并求DQ:CE的值.
(2)如圖(3),當矩形APEQ繞著點A逆時針旋轉至如圖(3)位置時,請幫助小明判斷DQ:CE的值是否發生變化?若不變,說明理由.若改變,求出新的比值.
問題拓展:若將“問題原型”中的矩形ABCD改變為平行四邊形ABCD,且AB=3,AD=7,∠B=45°,P、Q分別是AB、AD邊上的點,且AP=
AB,AQ=
AD,以AP、AQ為鄰邊作平行四邊形APEQ.當平行四邊形APEQ繞著點A逆時針旋轉至如圖(4)位置時,連接CE、DQ.請幫助小明求出DQ:CE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小穎和小亮上山游玩,小穎乘會纜車,小亮步行,兩人相約在山頂的纜車終點會合.已知小亮行走到纜車終點的路程是纜車到山頂的線路長的2倍,小穎在小亮出發后50 min才乘上纜車,纜車的平均速度為180 m/min.設小亮出發x min后行走的路程為y m.圖中的折線表示小亮在整個行走過程中y與x的函數關系.
⑴小亮行走的總路程是____________cm,他途中休息了________min.
⑵①當50≤x≤80時,求y與x的函數關系式;
②當小穎到達纜車終點為時,小亮離纜車終點的路程是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,點E、F分別是AB、CD上的點,DE、AF分別交BC于G、H,∠A=∠D,∠1=∠2,試說明∠B=∠C.閱讀下面的解題過程,在橫線上補全推理過程或依據.
解:∵∠1=∠2(已知)
∠1=∠3(______________________________)
∴∠2=∠3(等量代換)
∴AF∥DE(_____________________________)
∴∠4=∠D(__________________________________)
又∵∠A=∠D (已知)
∴∠4=∠A(等量代換)
______(____________________________________)
∴∠B=∠C (_________________________________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平行四邊形中,點
是對角線
的中點,
過點
與
,
分別相交于
,
,
過點
與
,
分別相交于點
,
,連接
,
,
,
.
(1)求證:四邊形是平行四邊形;
(2)如圖2,若,
,在不添加任何輔助的情況下,請直接寫出圖2中與四邊形
面積相等的所有的平行四邊形(四邊形
除外).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在讀書月活動中,學校準備購買一批課外讀物,為使課外讀物滿足同學們的需求,學校就“我最喜愛的課外讀物”從文學、藝術、科普和其他四個類別進行了抽樣調查(每位同學只選一類),如圖是根據調查結果繪制的兩幅不完整的統計圖.
請你根據統計圖提供的信息,解答下列問題:
(1)本次調查中,一共調查了_____名同學;
(2)條形統計圖中,m=_____,n=_______;
(3)扇形統計圖中,藝術類讀物所在扇形的圓心角是______度;
(4)學校計劃購買課外讀物5000冊,請根據樣本數據,估計學校購買其他類讀物多少冊比較合理?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com