精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是半圓O的直徑,且AB=12,點C為半圓上的一點.將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是( 。

A. B. C. D.

【答案】C

【解析】

過點OODBC于點D,交弧BC于點E,則可判斷點O是弧BC的中點,由折疊的性質可得OD=OE=R=3,RtOBD中求出∠OBD=30°,繼而得出∠AOC,求出扇形AOC的面積即可得出陰影部分的面積

過點O0DBC于點

D,交弧BC于點E,連接OC

則點E是弧BEC的中點,由折疊的性質可得點O為弧BOC的中點,

S弓形BO=S弓形CO,

RtBOD,OD=DE=R=3,OB=R=6

∴∠OBD=30°

∴∠AOC=60°

S月影=S扇形AOC=

故選:C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線過B(﹣2,6),C(2,2)兩點.

(1)試求拋物線的解析式;

(2)記拋物線頂點為D,求△BCD的面積;

(3)若直線向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知等邊△AOC的周長為3,作ODAC于點D,在x軸上取點C1,使CC1DC,以CC1為邊作等邊△A1CC1;作CD1A1C1于點D1,在x軸上取點C2,使C1C2D1C1,以C1C2為邊作等邊△A2C1C2;作C1D2A2C2于點D2,在x軸上取點C,使C2C3D2C2,以C2C3為邊作等邊△A3C2C3;,且點A,A1A2,A3都在第一象限,如此下去,則等邊△A2019C2018C2019的頂點A2019坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校為了改善辦學條件,計劃購置一批電子白板和臺式電腦.經招投標,購買一臺電子白板比購買2臺臺式電腦多3000元,購買2臺電子白板和3臺臺式電腦共需2.7萬元.

1)求購買一臺電子白板和一臺臺式電腦各需多少元?

2)根據該校實際情況,購買電子白板和臺式電腦的總臺數為24,并且臺式電腦的臺數不超過電子白板臺數的3倍.問怎樣購買最省錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某旅行團32人在景區A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.

1)求該旅行團中成人與少年分別是多少人?

2)因時間充裕,該團準備讓成人和少年(至少各1名)帶領10名兒童去另一景區B游玩.景區B的門票價格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費攜帶一名兒童.

①若由成人8人和少年5人帶隊,則所需門票的總費用是多少元?

②若剩余經費只有1200元可用于購票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊?求所有滿足條件的方案,并指出哪種方案購票費用最少.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】實施新課程改革后,學生的自主學習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期半個月的跟蹤調查,并將調查結果分成四類,A:特別好;B:好;C:一般;D:較差;并將調查結果繪制成以下兩幅不完整的統計圖,請你根據統計圖解答下列問題:

1)本次調查中C類女生有 名,D類男生有 名;將上面的條形統計圖補充完整;

2)計算扇形統計圖中D所占的圓心角是 ;

3)為了共同進步,張老師想從被調查的A類和D類學生中分別選取一位同學進行一幫一互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠ABC=∠ADC,對角線AC、BD交于點O,AOBO,DE平分∠ADCBC于點E,連接OE

1)求證:四邊形ABCD是矩形;

2)若AB2,求△OEC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】折紙飛機是我們兒時快樂的回憶,現有一張長為290mm,寬為200mm的白紙,如圖所示,以下面幾個步驟折出紙飛機:(說明:第一步:白紙沿著EF折疊,AB邊的對應邊AB′與邊CD平行,將它們的距離記為x;第二步:將EM,MF分別沿著MHMG折疊,使EMMF重合,從而獲得邊HGAB′的距離也為x),則PD=______mm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數yax22ax2的圖象(記為拋物線C1)頂點為M,直線ly2xax軸,y軸分別交于A,B

1)對于拋物線C1,以下結論正確的是   

對稱軸是:直線x1;頂點坐標(1,﹣a2);拋物線一定經過兩個定點.

2)當a0時,設△ABM的面積為S,求Sa的函數關系;

3)將二次函數yax22ax2的圖象C1繞點Pt,﹣2)旋轉180°得到二次函數的圖象(記為拋物線C2),頂點為N

當﹣2x1時,旋轉前后的兩個二次函數y的值都會隨x的增大而減小,求t的取值范圍;

a1時,點Q是拋物線C1上的一點,點Q在拋物線C2上的對應點為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视