【題目】如圖,在直角坐標系xOy中,二次函數y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
【答案】解:(1)∵函數的圖象與x軸相交于O,∴0=k+1,∴k=﹣1。
∴這個二次函數的解析式為y=x2﹣3x。
(2)如圖,過點B做BD⊥x軸于點D,
令x2﹣3x=0,解得:x=0或3。∴AO=3。
∵△AOB的面積等于6,∴AOBD=6。∴BD=4。
∵點B在函數y=x2﹣3x的圖象上,
∴4=x2﹣3x,解得:x=4或x=﹣1(舍去)。
又∵頂點坐標為:( 1.5,﹣2.25),且2.25<4,
∴x軸下方不存在B點。
∴點B的坐標為:(4,4)。
(3)存在。
∵點B的坐標為:(4,4),∴∠BOD=45°,。
若∠POB=90°,則∠POD=45°。
設P點坐標為(x,x2﹣3x)。
∴。
若,解得x=4 或x=0(舍去)。此時不存在點P(與點B重合)。
若,解得x=2 或x=0(舍去)。
當x=2時,x2﹣3x=﹣2。
∴點P 的坐標為(2,﹣2)。
∴。
∵∠POB=90°,∴△POB的面積為: POBO=
×
×
=8。
【解析】(1)將原點坐標代入拋物線中即可求出k的值,從而求得拋物線的解析式。
(2)根據(1)得出的拋物線的解析式可得出A點的坐標,也就求出了OA的長,根據△OAB的面積可求出B點縱坐標的絕對值,然后將符合題意的B點縱坐標代入拋物線的解析式中即可求出B點的坐標,然后根據B點在拋物線對稱軸的右邊來判斷得出的B點是否符合要求即可。
(3)根據B點坐標可求出直線OB的解析式,由于OB⊥OP,由此可求出P點的坐標特點,代入二次函數解析式可得出P點的坐標.求△POB的面積時,求出OB,OP的長度即可求出△BOP的面積。
科目:初中數學 來源: 題型:
【題目】如圖,在∠MON中,以點O為圓心,任意長為半徑作弧,交射線OM于點A,交射線ON于點B,再分別以A,B為圓心,OA的長為半徑作弧,兩弧在∠MON的內部交于點C,作射線OC.若OA=5,AB=6,則點B到AC的距離為( )
A. 5 B. C. 4 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明家、食堂,圖書館在同一條直線上,小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,如圖反映了這個過程中,小明離家的距離y(km)與時間x(min)之間的對應關系,根據圖象,下列說法正確的是( )
A.小明吃早餐用了25min
B.食堂到圖書館的距離為0.6km
C.小明讀報用了30min
D.小明從圖書館回家的速度為0.8km/min
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形是正方形,
是直線
上任意一點,
于點
,
于點
.當點G在BC邊上時(如圖1),易證DF-BE=EF.
(1)當點在
延長線上時,在圖2中補全圖形,寫出
、
、
的數量關系,并證明;
(2)當點在
延長線上時,在圖3中補全圖形,寫出
、
、
的數量關系,不用證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點P在AD 邊上以每秒1cm的速度從點A向點D運動,點Q在BC邊上,以每秒4cm的速度從點C出發,在CB間往返運動,兩個點同時出發,當點P到達點D時停止(同時點Q也停止),在運動以后,以P、D、Q、B四點組成平行四邊形的次數有( )
A. 4次 B. 3次 C. 2次 D. 1次
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知分式 A
(1)化簡這個分式;
(2)當 a>2 時,把分式 A 化簡結果的分子與分母同時加上 4 后得到分式 B,問:分式 B 的值較原來分式 A 的值是變大了還是變小了?試說明理由;
(3)若 A 的值是整數,且 a 也為整數,求出符合條件的所有 a 值的和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,正方形ABCD,E為邊AD上一點,△ABE繞點A逆時針旋轉90°后得到△ADF.
⑴ 如果∠AEB=65°,求∠DFE的度數;
⑵ BE與DF的數量關系如何?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com