(1)證明:∵△ABD和△FBC都是等邊三角形,
BD=BA,BF=BC,∠DBA=∠FBC=60°,
∴∠DBA-∠FBA=∠FBC-∠FBA,
∴∠DBF=∠ABC.
在△ABC和△DBF中,

∴△ABC≌△DBF.
∴AC=DF=AE.
同理△ABC≌△EFC.
∴AB=EF=AD.
∴四邊形ADFE是平行四邊形.
(2)解:當∠BAC=150°,∠DAE=360°-60°-60°-150°=90°,
∴平行四邊形DAEF是矩形.
當AB=AC≠BC,有AD=AE,
∴平行四邊形DAEF是菱形.
當∠BAC=60°,△FBC與△ABC重合,故以D、A、E、F為頂點的四邊形不存在.
分析:(1)、根據等邊三角形的性質證△ABC≌△DBF≌△EFC,就有AD=EF,DF=CE,從而得證四邊形DAEF是平行四邊形;
(2)、當∠BAC=150°,∠DAE=360°-60°-60°-150°=90°,所以平行四邊形DAEF是矩形;
當AB=AC≠BC,有AD=AE,所以平行四邊形DAEF是菱形;
當∠BAC=60°,△FBC與△ABC重合,故以D、A、E、F為頂點的四邊形不存在.
點評:本題利用了等邊三角形的性質和全等三角形的判定和性質.