【題目】如圖,在△ABC中,AB=AC=5,sinC=,將△ABC繞點A逆時針旋轉得到△ADE,點B、C分別與點D、E對應,AD與邊BC交于點F.如果AE∥BC,那么BF的長是____.
【答案】
【解析】
如圖,過A作AH⊥BC于H,得到∠AHB=∠AHC=90°,BH=CH,根據三角函數的定義得到AH=3,求得CH=BH4,根據旋轉的性質得到∠BAF=∠CAE,根據平行線的性質得到∠CAE=∠C,從而得到∠BAF=∠B,由等角對等邊得到AF=BF,設AF=BF=x,得到FH=4﹣x,根據勾股定理即可得到結論.
如圖,過A作AH⊥BC于H,∴∠AHB=∠AHC=90°,BH=CH.
∵AB=AC=5,sinC,∴AH=3,∴CH=BH
4.
∵將△ABC繞點A逆時針旋轉得到△ADE,∴∠BAF=∠CAE.
∵AE∥BC,∴∠CAE=∠C.
∵∠B=∠C,∴∠BAF=∠B,∴AF=BF,設AF=BF=x,∴FH=4﹣x.
∵AF2=AH2+FH2,∴x2=32+(4﹣x)2,解得:x,∴BF
.
故答案為:.
科目:初中數學 來源: 題型:
【題目】給出如下規定:兩個圖形和
,點
為
上任一點,點
為
上任一點,如果線段
的長度存在最小值,就稱該最小值為兩個圖形
和
之間的距離.
在平面直角坐標系xOy中,0為坐標原點.
(1)點的坐標為
,則點
和射線
之間的距離為______,點
和射線
之間的距離為 .
(2)如果直線和雙曲線
之間的距離為
,那么
____;(可在圖1中進行研究)
(3)點的坐標為
,將射線
繞原點
逆時針旋轉
,得到射線
,在坐標平面內所有和射線
之間的距離相等的點所組成的圖形記為圖形
.
①請在圖2中畫出圖形,井描述圖形
的組成部分:(若涉及平面中某個區域時可以用陰影表示)
②將射線組成的圖形記為圖形
,拋物線
與圖形
的公共部分記為圖形
,請直接寫出圖形
和圖形
之間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:點P是△ABC內部或邊上的點(頂點除外),在△PAB,△PBC,△PCA中,若至少有一個三角形與△ABC相似,則稱點P是△ABC的自相似點.
例如:如圖1,點P在△ABC的內部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點P為△ABC的自相似點.
請你運用所學知識,結合上述材料,解決下列問題:
在平面直角坐標系中,點M是曲線C:上的任意一點,點N是x軸正半軸上的任意一點.
(1) 如圖2,點P是OM上一點,∠ONP=∠M, 試說明點P是△MON的自相似點; 當點M的坐標是,點N的坐標是
時,求點P 的坐標;
(2) 如圖3,當點M的坐標是,點N的坐標是
時,求△MON的自相似點的坐標;
(3) 是否存在點M和點N,使△MON無自相似點,?若存在,請直接寫出這兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經過A,C兩點,與x軸交于另一點B.
(1)求拋物線解析式及B點坐標;
(2)x2+bx+c≥﹣5x+5的解集 .
(3)若點M在第一象限內拋物線上一動點,連接MA、MB,當點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形在平面直角坐標系中,點
,
分別在
軸,
軸的正半軸上,等腰直角三角形
的直角頂點
在原點,
,
分別在
,
上,且
,
.將
繞點
逆時針旋轉,得
點
,
旋轉后的對應點為
,
.
(Ⅰ)①如圖①,求的長;②如圖②,連接
,
,求證
;
(Ⅱ)將繞點
逆時針旋轉一周,當
時,求點
的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣6x+4的頂點A在直線y=kx﹣2上.
(1)求直線的函數表達式;
(2)現將拋物線沿該直線方向進行平移,平移后的拋物線的頂點為A′,與直線的另一交點為B′,與x軸的右交點為C(點C不與點A′重合),連接B′C、A′C.
ⅰ)如圖,在平移過程中,當點B′在第四象限且△A′B′C的面積為60時,求平移的距離AA′的長;
ⅱ)在平移過程中,當△A′B′C是以A′B′為一條直角邊的直角三角形時,求出所有滿足條件的點A′的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在銳角△ABC中,邊BC長為18,高AD長為12
(1)如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;
(2)設EH=x,矩形EFGH的面積為S,求S與x的函數關系式,并求S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在面積為60的平行四邊形ABCD中,過點A作AE垂直于直線BC于點E,作AF垂直于直線CD于點F,若AB=10,BC=12,則CE+CF的值為( )
A. 22-11B.
C. 或
D.
或
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com