【題目】正方形ABCD的邊長AB=2,E為AB的中點,F為BC的中點,AF分別與DE、BD相交于點M,N,則MN的長為( 。
A. B.
﹣1 C.
D.
【答案】C
【解析】
首先過F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根據勾股定理求得AF,根據平行線分線段成比例定理求得OH,由相似三角形的性質求得AM與AF的長,根據相似三角形的性質,求得AN的長,即可得到結論.
解:過F作FH⊥AD于H,交ED于O,則FH=AB=2,
∵BF=FC,BC=AD=2,
∴BF=AH=1,FC=HD=1,
∴AF= =
=
,
∵OH∥AE,
∴ ,
∴OH= ,
∴OF=FH-OH=2- =
,
∵AE∥FO,
∴△AME∽FMO,
∴ ,
∴AM=AF=
,
∵AD∥BF,
∴△AND∽△FNB,
∴ ,
∴AN=2NF= ,
∴MN=AN-AM= .
故選:C.
科目:初中數學 來源: 題型:
【題目】某校在宣傳“民族團結”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學生從中選擇并且只能選擇一種最喜歡的,學校就宣傳形式對學生進行了抽樣調查,并將調查結果繪制了如下兩幅不完整的統計圖.
請結合圖中所給信息,解答下列問題:
(1)本次調查的學生共有_____人;
(2)補全條形統計圖;
(3)該校共有1200名學生,請估計選擇“唱歌”的學生有多少人?
(4)七年一班在最喜歡“器樂”的學生中,有甲、乙、丙、丁四位同學表現優秀,現從這四位同學中隨機選出兩名同學參加學校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為1,正方形CEFG的面積為,點E在CD邊上,點G在BC的延長線上,設以線段AD和DE為鄰邊的矩形的面積為
,且
.
⑴求線段CE的長;
⑵若點H為BC邊的中點,連結HD,求證:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y=(m≠0)的圖象經過點(1,4),一次函數y=﹣x+b的圖象經過反比例函數圖象上的點Q(﹣4,n).
(1)求反比例函數與一次函數的表達式;
(2)一次函數的圖象分別與x軸、y軸交于A、B兩點,與反比例函數圖象的另一個交點為P點,連結OP、OQ,求△OPQ的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】張老師計劃到超市購買甲種文具100個,他到超市后發現還有乙種文具可供選擇,如果調整文具的購買品種,每減少購買1個甲種文具,需增加購買2個乙種文具.設購買x個甲種文具時,需購買y個乙種文具.
(1)①當減少購買1個甲種文具時,x=______,y=________;
②求y與x之間的函數表達式.
(2)已知甲種文具每個5元,乙種文具每個3元,張老師購買這兩種文具共用去540元,甲、乙兩種文具各購買了多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+2經過點A(﹣1,﹣1)和點B(3,﹣1).
(1)求這條拋物線所對應的二次函數的表達式.
(2)寫出拋物線的開口方向、對稱軸、頂點坐標和二次函數的最值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形MNKO和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外邊,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B順時針旋轉,使KN邊與BC邊重合,完成第一次旋轉;再繞點C順時針旋轉,使NM邊與CD邊重合,完成第二次旋轉;………在這樣連續6次旋轉的過程中,點M在圖中直角坐標系中的縱坐標可能是( 。
A. B. ﹣2.2C. 2.3D. ﹣2.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解學生平均每天課外閱讀的時間,隨機調查了該校部分學生一周內平均每天課外閱讀的時間(以分鐘為單位,并取整數),將有關數據統計整理并繪制成尚未完成的頻率分布表和頻數分布直方圖.請你根據圖表中所提供的信息,解答下列問題.
頻率分布表
組別 | 分組 | 頻數 | 頻率 |
1 | 15~25 | 7 | 0.14 |
2 | 25~35 | a | 0.24 |
3 | 35~45 | 20 | 0.40 |
4 | 45~55 | 6 | b |
5 | 55~65 | 5 | 0.10 |
注:這里的15~25表示大于等于15同時小于25.
(1)求被調查的學生人數;
(2)直接寫出頻率分布表中的a和b的值,并補全頻數分布直方圖;
(3)若該校共有學生500名,則平均每天課外閱讀的時間不少于35分鐘的學生大約有多少名?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com