精英家教網 > 初中數學 > 題目詳情
如圖,等腰直角三角形ABC的斜邊AB所在的直線上有E,F兩點,且∠E+∠F=45°,AE=3,設AB=x,BF=y,則y與x的函數關系式為______.
∵△ABC為等腰直角三角形,
∴AC=BC.
∴∠CAB=∠CBA=45°,
∴∠EAC=∠CBF,∠E+∠ECA=45°.
∵∠E+∠F=45°,
∴∠F=∠ECA,
∴△ACE△BFC,
AC
BF
=
AE
BC

∵等腰直角三角形ABC的斜邊AB=x,
∴AC=BC=
2
2
x,
解得:y=
1
6
x2
故應填:y=
1
6
x2
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

在平面直角坐標系中,已知拋物線y=-
1
2
x2+bx+c(b,c為常數)的頂點為P,等腰直角三角形ABC的頂點A的坐標為(0,-1),C的坐標為(4,3),直角頂點B在第四象限.
(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數表達式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.
(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標;
(ii)取BC的中點N,連接NP,BQ.試探究
PQ
NP+BQ
是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數的圖象如圖所示,根據圖中的數據,
(1)求二次函數的解析式;
(2)設此二次函數的頂點為P,求△ABP的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:直線y=2x+6與x軸和y軸分別交于A、C兩點,拋物線y=-x2+bx+c經過點A、C,點B是拋物線與x軸的另一個交點.
(1)求拋物線的解析式及B的坐標;
(2)設點P是直線AC上一點,且S△ABP:S△BPC=1:3,求點P的坐標;
(3)直線y=
1
2
x+a與(1)中所求的拋物線交于M、N兩點,問:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

拋物線y=mx2+(m-3)x-3(m>0)與x軸交于A、B兩點,且點A在點B的左側,與y軸交于點C,OB=OC.
(1)求這條拋物線的解析式;
(2)若點P(x1,b)與點Q(x2,b)在(1)中的拋物線上,且x1<x2,PQ=n.
①求4x12-2x2n+6n+3的值;
②將拋物線在PQ下方的部分沿PQ翻折,拋物線的其它部分保持不變,得到一個新圖象.當這個新圖象與x軸恰好只有兩個公共點時,b的取值范圍是______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角坐標系中,點O為原點,直線y=kx+b與x軸交于點A(3,0),與y軸的正半軸交于點B,tan∠OAB=
3

(1)求這直線的解析式;
(2)將△OAB繞點A順時針旋轉60°后,點B落到點C的位置,求以點C為頂點且經過點A的拋物線的解析式;
(3)設(2)中的拋物線與x軸的另一個交點為點D,與y軸的交點為E.試判斷△ODE是否與△OAB相似?如果認為相似,請加以證明;如果認為不相似,也請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在直角梯形ABCD中,∠C=90°,高CD=6cm(如圖1).動點P,Q同時從點B出發,點P沿BA,AD,DC運動到點C停止,點Q沿BC運動到C點停止.兩點運動時的速度都是1cm/s.而當點P到達點A時,點Q正好到達點C.設P,Q同時從點B出發,經過的時間為t(s)時,△BPQ的面積為y(cm2)(如圖2).分別以x,y為橫、縱坐標建立直角坐標系,已知點P在AD邊上從A到D運動時,y與t的函數圖象是圖3中的線段MN.
(1)分別求出梯形中BA,AD的長度;
(2)寫出圖3中M,N兩點的坐標;
(3)分別寫出點P在BA邊上和DC邊上運動時,y與t的函數關系式(注明自變量的取值范圍),并在答題卷的圖4(放大了的圖3)中補全整個運動中y關于t的函數關系的大致圖象.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(1)在足球比賽中,當守門員遠離球門時,進攻隊員常常使用“吊射”的戰術(把球高高地挑過守門員的頭頂,射入球門).一位球員在離對方球門30米的M處起腳吊射,假如球飛行的路線是一條拋物線,在離球門14米時,足球到達最大高度
32
3
米,如圖1,以球門底部為坐標原點建立坐標系,球門PQ的高度為2.44米,試通過計算說明,球是否會進入球門?
(2)在(1)中,若守門員站在距球門2米遠處,而守門員跳起后最多能摸到2.75米高處,他能否在空中截住這次吊射?
(3)如圖2,在另一次地面進攻中,假如守門員站在離球門中央2米遠的A處防守,進攻隊員在離球門中央12米的B處,以120千米/小時的球速起腳射門,射向球門的立柱C,球門的寬度CD為7.2米,而守門員防守的最遠水平距離S(米)與時間t(秒)之間的函數關系式為S=10t,問守門員能否擋住這次射門?
(4)在(3)的條件下,∠EAG區域為守門員的截球區域,試估計∠EAG的最大值(精確到0.1°).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某小區有一長100m,寬80m的空地,現將其建成花園廣場,設計圖案如下,陰影區域為綠化區(四塊綠化區是全等矩形),空白區域為活動區,且四周出口一樣寬,寬度不小于50m,不大于60m.預計活動區每平方米造價60元,綠化區每平方米造價50元.設每塊綠化區的長邊為xm,短邊為ym,工程總造價為w元.
(1)寫出x的取值范圍;
(2)寫出y與x的函數關系式;
(3)寫出w與x的函數關系式;
(4)如果小區投資46.9萬元,問能否完成工程任務?若能,請寫出x為整數的所有工程方案;若不能,請說明理由.(參考數據:
3
≈1.732)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视