【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MNMC的值.
【答案】(1)、證明過程見解析;(2)、證明過程見解析;(3)、8.
【解析】
試題分析:(1)、根據OA=OC得出∠A=∠ACO,根據∠COB=2∠A,,∠COB=2∠PCB,則∠A=∠ACO=∠PCB,根據AB為直徑得出∠ACO+∠OCB=90°,則∠PCB+∠OCB=90°,得出切線;(2)、根據AC=PC得出∠A=∠P,則∠A=∠ACO=∠PCB=∠P,根據∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB得出∠COB=∠CBO,然后得出答案;(3)、連接AM、BM,根據M是弧的中點得出∠ACM=∠BCM,根據∠ACM=∠ABM得到∠BCM=∠ABM,從而得出△MBN∽△MCB,根據相似比得出BM2=MNMC;根據等腰直角△ABM中AB的長度得出AM和BM的長度,然后計算.
試題解析:(1)、如圖∵OA=OC,∴∠A=∠ACO,
又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB,又∵AB是⊙O的直徑, ∴∠ACO+∠OCB=90°,
∴∠PCB+∠OCB=90°,∴∠PCO=90°,即OC⊥CP, 而OC是⊙O的半徑,∴PC是⊙O的切線;.
(2)、∵AC=PC,∴∠A=∠P, ∴∠A=∠ACO=∠PCB=∠P, 又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,∴BC=OC,∴BC=AB;
(3)、連接MA,MB,
∵點M是弧AB的中點, ∴,∴∠ACM=∠BCM,∵∠ACM=∠ABM,∴∠BCM=∠ABM,
又∵∠BMN=∠BMC,∴△MBN∽△MCB,∴, ∴BM2=MN
MC,
又∵AB是⊙O的直徑,,∴∠AMB=90°,AM=BM,
∴AB=4,∴BM=2,∴MN
MC=BM2=(2
)2=8
科目:初中數學 來源: 題型:
【題目】某商店出售兩件衣服,每件賣了200元,其中一件賺了25%,而另一件賠了20%,那么商店在這次交易中( 。
A. 賺了10元 B. 虧了10元 C. 賺了20元 D. 虧了20元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】便民商店經營一種商品,在銷售過程中,發現一周利潤y(元)與每件銷售價x(元)之間的關系滿足y=-2(x-20)2+1558,由于某種原因,價格只能15≤x≤22,那么一周可獲得最大利潤是( )
A.20 B.1508 C.1550 D.1558
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩家超市同價銷售同一款可拆分式驅蚊器,1套驅蚊器由1個加熱器和1瓶電熱蚊香液組成.電熱蚊香液作為易耗品可單獨購買,1瓶電熱蚊香液的售價是1套驅蚊器的.已知電熱蚊香液的利潤率為20%,整套驅蚊器的利潤率為25%.張阿姨從甲超市買了1套這樣的驅蚊器,并另外買了4瓶電熱蚊香液,超市從中共獲利10元.
(1)求1套驅蚊器和1瓶電熱蚊香液的售價;
(2)為了促進該款驅蚊器的銷售,甲超市打8.5折銷售,而乙超市采用的銷售方法是顧客每買1套驅蚊器送1瓶電熱蚊香液.在這段促銷期間,甲超市銷售2000套驅蚊器,而乙超市在驅蚊器銷售上獲得的利潤不低于甲超市的1.2倍.問乙超市至少銷售多少套驅蚊器?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com