【題目】如圖2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,則以下結論:①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上.正確的是( 。
A. ① B. ② C. ①② D. ①②③
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,請證明:BD=AB﹣AF;
(2)試探索:點D在AB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結論是否成立?若不成立,請直接寫出正確結論(不需要證明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數;
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.
閱讀下面的解答過程,并填空(理由或數學式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性質)
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究:
如圖①,在△ABC中,點D、E、F分別在邊AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度數.請將下面的解答過程補充完整,并填空(理由或數學式):
解:∵DE∥BC( )
∴∠DEF= ( )
∵EF∥AB
∴ =∠ABC( )
∴∠DEF=∠ABC( )
∵∠ABC=65°
∴∠DEF=
應用:
如圖②,在△ABC中,點D、E、F分別在邊AB、AC、BC的延長線上,且DE∥BC,EF∥AB,若∠ABC=β,則∠DEF的大小為 (用含β的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C,試說明AD∥BC和AB∥CD.
請完成下面的推理過程,并填空(理由或數學式):
∵∠1=∠2( )
∠1=∠AGH( )
∴∠2=∠AGH( )
∴AD∥BC( )
∴∠ADE=∠C( )
∵∠A=∠C( )
∴∠ADE=∠A
∴AB∥CD( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,AP′⊥AB,BP′交 AC 于點 P, AP=AP′.
(1)求證:∠CBP=∠ABP;
(2)過點 P′作 P′E⊥AC 于點 E,求證:AE=CP.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。
(1)請在圖中作出△A′B′C′;(2)寫出點A′、B′、C′的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com