【題目】如圖,學校大門出口處有一自動感應欄桿,點A是欄桿轉動的支點,當車輛經過時,欄桿AE會自動升起,某天早上,欄桿發生故障,在某個位置突然卡住,這時測得欄桿升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大門BC打開的寬度為2米,以下哪輛車可以通過?( )
(欄桿寬度,汽車反光鏡忽略不計)
(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.車輛尺寸:長×寬×高)
A.寶馬Z4(4200mm×1800mm×1360mm)
B.奇瑞QQ(4000mm×1600mm×1520mm)
C.大眾朗逸(4600mm×1700mm×1400mm)
D.奧迪A4(4700mm×1800mm×1400mm)
【答案】C
【解析】解:如圖,過點A作BC的平行線AG,過點N作NQ⊥BC于Q,交AG于點R,
則∠BAG=90°,
∵∠BAE=127°,∠BAG=90°,
∴∠EAH=∠EAB﹣∠BAG=37°.
在△NAR中,∠ARN=90°,∠EAG=37°,
當車寬為1.8m,則GR=1.8m,故AR=2﹣1.8=0.2(m),
∴NR=ARtan37°=0.2×0.75=0.15(m),
∴NQ=1.2+0.15=1.35<1.36,
∴寶馬Z4(4200mm×1800mm×1360mm)無法通過,
∴奧迪A4(4700mm×1800mm×1400mm)無法通過,
故此選項A,D不合題意;
當車寬為1.6m,則GR=1.6m,故AR=2﹣1.6=0.4(m),
∴NR=ARtan37°=0.4×0.75=0.3(m),
∴NQ=1.2+0.3=1.5<1.52,
∴奇瑞QQ(4000mm×1600mm×1520mm)無法通過,故此選項不合題意;
當車寬為1.7m,則GR=1.7m,故AR=2﹣1.7=0.3(m),
∴NR=ARtan37°=0.3×0.75=0.225(m),
∴NQ=1.2+0.225=1.425>1.4,
∴大眾朗逸(4600mm×1700mm×1400mm)可以通過,故此選項符合題意;
故選:C.
【考點精析】解答此題的關鍵在于理解解直角三角形的相關知識,掌握解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法).
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A的坐標是(0,2),點C是x軸上的一個動點.當點C在x軸上移動時,始終保持△ACP是等邊三角形(點A、C、P按逆時針方向排列);當點C移動到點O時,得到等邊三角形AOB(此時點P與點B重合).
初步探究
(1)寫出點B的坐標 ;
(2)點C在x軸上移動過程中,當等邊三角形ACP的頂點P在第三象限時,連接BP,求證:△AOC≌△ABP.
深入探究
(3)當點C在x軸上移動時,點P也隨之運動.探究點P在怎樣的圖形上運動,請直接寫出結論;并求出這個圖形所對應的函數表達式.
拓展應用
(4)點C在x軸上移動過程中,當△POB為等腰三角形時,直接寫出此時點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=5,AC=3,D點從BC的中點到C點運動,點E在AD上,以E為圓心的⊙E分別與AB、BC相切,則⊙E的半徑R的取值范圍為( 。
A.≤R≤
B.≤R≤
C.≤R≤2
D.1≤R≤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數;
(2)作圖:在△BED中作出BD邊上的高EF;BE邊上的高DG;
(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高EF為多少?若BE=6,求△BED中BE邊上的高DG為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AD∥BC,AB⊥AD,點E點F分別在射線AD,射線BC上,若點E與點B關于AC對稱,點E點F關于BD對稱,AC與BD相交于點G,則( )
A.∠AEB+22°=∠DEF
B.1+tan∠ADB=
C.2BC=5CF
D.4cos∠AGB=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】任何一個正整數n都可以進行這樣的分解:n=s×t(s,t是正整數,且s≤t),如果p×q在n的所有這種分解中兩因數之差的絕對值最小,我們就稱p×q是n的最佳分解,并規定:、例如18可以分解成1×18,2×9,3×6這三種,這時就有
.給出下列關于F(n)的說法:(1)
;(2)
;(3)F(27)=3;(4)若n是一個整數的平方,則F(n)=1.其中正確說法的有_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題背景:已知,如圖1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,AB=a,△ABC的面積為S,則有BC=a,S=
a2.
(2)遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.
①求證:△ADB≌△AEC;
②求∠ADB的度數.
③若AD=2,BD=4,求△ABC的面積.
(3)拓展延伸:如圖3,在等腰△ABC中,∠BAC=120°,在∠BAC內作射線AM,點D與點B關于射線AM軸對稱,連接CD并延長交AM于點E,AF⊥CD于F,連接AD,BE.
①求∠EAF的度數;
②若CD=5,BD=2,求BC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com