【題目】如圖,AD=BF,∠ACD=90°,AE平分∠BAC,BF⊥AE,交AC的延長線于F,且垂足為E,則下列結論:①AD=2BF; ②BF=AF;③AC+CD=AB;④AB=BF;⑤AD=2BE.其中正確的結論有( )
A. 1個B. 2個C. 3個D. 4個
【答案】B
【解析】
根據∠ACB=90°,BF⊥AE,得出∠ACB=∠BED=∠BCF=90°,推出∠F=∠ADC,證△BCF≌△ACD,根據全等三角形的性質即可判斷①②;假如AC+CD=AB,求出∠F+∠FBC=90°,即可判斷③④,證根據全等三角形的判定ASA得出△BEA≌△FEA,推出BE=EF,即可判斷⑤.
∵∠ACB=90°,BF⊥AE,
∴∠ACB=∠BED=∠BCF=90°,
∴∠F+∠FBC=90°,∠BDE+∠FBC=90°,
∴∠F=∠BDE,
∵∠BDE=∠ADC,
∴∠F=∠ADC,
∵AC=BC,
∴△BCF≌△ACD,
∴AD=BF,∴①錯誤;
∵AF>AD,
∴BF≠AF②錯誤;
∵△BCF≌△ACD,
∴CD=CF,
∴AC+CD=AF,
∵△BCF≌△ACD,
∴CD=CF,
∴AC+CD=AF,
又∵AB=AF,
∴AC+CD=AB.
∴③正確;
∵BF=AC,AC<AF=AB,
∴AB>BF,
∴④錯誤;
由△BCF≌△ACD,
∴AD=BF,
∵AE平分∠BAF,AE⊥BF,
∴∠BEA=∠FEA=90°,∠BAE=∠FAE,
∵AE=AE,∴△BEA≌△FEA,
∴BE=EF,
∴⑤正確;
故選B
科目:初中數學 來源: 題型:
【題目】某制筆企業欲將200件產品運往,
,
三地銷售,要求運往
地的件數是運往
地件數的2倍,各地的運費如圖所示.設安排
件產品運往
地.
|
|
| |
產品件數(件) | |||
運費(元) |
(1)①根據信息補全上表空格.②若設總運費為元,寫出
關于
的函數關系式及自變量的取值范圍.
(2)若運往地的產品數量不超過運往
地的數量,應怎樣安排
,
,
三地的運送數量才能達到運費最少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】網格是由邊長為1的小正方形組成,點A,B,C位置如圖所示,若點,
.
(1)建立適當的平面直角坐標系,并寫出點C坐標(______,______);點B到x軸的距離是______,點C到y軸的距離是______;
(2)在平面直角坐標系中找一點D,使A,B,C,D為頂點的四邊形的所有內角都相等,再畫出四邊形ABCD.
(3)請你說出線段AB經過怎樣的變換得到線段DC的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)在下列橫線上用含有a,b的代數式表示相應圖形的面積.
① ; ② ; ③ ; ④ .
(2)通過拼圖,你發現前三個圖形的面積與第四個圖形面積之間有什么關系?請用數學式子表示: ;
(3)利用(2)的結論計算992+2×99×1+1的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABE中,∠A=105°,AE的垂直平分線MN交BE于點C,且AB+BC=BE,則∠B的度數是( )
A. 45°B. 60°C. 50°D. 25°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發現:
如圖1,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關系為__________;
(2)深入探究:
如圖2,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數量關系,并說明理由;
(3)拓展延伸:
如圖3,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)以a,b為直角邊,c為斜邊作兩個全等的Rt△ABE與Rt△FCD拼成如圖1所示的圖形,使B,E,F,C四點在一條直線上(此時E,F重合),可知△ABE ≌△FCD,AEDF,請你證明:
;
(2)在(1)中,固定△FCD,再將△ABE沿著BC平移到如圖2的位置(此時B,F重合),請你重新證明:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知E、F分別是平行四邊形ABCD的邊AB、CD上的兩點,且∠CBF=∠ADE.(1)求證:△ADE≌△CBF;
(2)判定四邊形DEBF是否是平行四邊形?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com