【題目】如圖,△ABC中,AB=AC,AD是∠BAC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.
【答案】(1)證明見解析;(2)當∠BAC=90°時,矩形AEBD是正方形.理由見解析.
【解析】試題分析:(1)利用平行四邊形的判定首先得出四邊形AEBD是平行四邊形,進而由等腰三角形的性質得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性質得出AD=BD=CD,進而利用正方形的判定得出即可.
(1)證明:∵點O為AB的中點,連接DO并延長到點E,使OE=OD,
∴四邊形AEBD是平行四邊形,
∵AB=AC,AD是∠BAC的角平分線,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四邊形AEBD是矩形;
(2)當∠BAC=90°時,
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分線,
∴AD=BD=CD,
∵由(1)得四邊形AEBD是矩形,
∴矩形AEBD是正方形.
科目:初中數學 來源: 題型:
【題目】用語言敘述多項式“-a-3”所表示的數量關系,下列敘述正確的是( )
A. a與-3的和
B. a的相反數與3的差
C. a的相反數與3的和
D. a的相反數與-3的差
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為12cm的等邊三角形ABC中,點P從點A開始沿AB邊向點B以每秒鐘1cm的速度移動,點Q從點B開始沿BC邊向點C以每秒鐘2cm的速度移動.若P、Q分別從A、B同時出發,其中任意一點到達目的地后,兩點同時停止運動,求:
(1)經過6秒后,BP= cm,BQ= cm;
(2)經過幾秒后,△BPQ是直角三角形?
(3)經過幾秒△BPQ的面積等于cm2?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一元二次方程2x2=1-3x化成ax2+bx+c=0的形式后,a、b、c的值分別為( )
A. 2,1,-3 B. 2,3,-1 C. 2,3,1 D. 2,1,3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列事件:①上海明天是晴天,②鉛球浮在水面上,③平面中,多邊形的外角和都等于360度,屬于確定事件的個數有( 。
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.
(1)如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;
(2)如果方程有兩個相等的實數根,試判斷△ABC的形狀,并說明理由;
(3)如果△ABC是等邊三角形,試求這個一元二次方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班有20位同學參加乒乓球、羽毛球比賽,甲說:“只參加一項的人數大于14人。”乙說:“兩項都參加的人數小于5人。”對于甲、乙兩人的說法,有下列四個命題,其中真命題的是( )
A. 若甲對,則乙對 B. 若乙對,則甲對
C. 若乙錯,則甲錯 D. 若甲錯,則乙對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點P(1,a)與Q(b,2)關于x軸成軸對稱,又有點Q(b,2)與點M(m,n)關于y軸成軸對稱,則m﹣n的值為( )
A.3
B.﹣3
C.1
D.﹣1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com