精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.

(1)求證:CF為⊙O的切線;

(2)填空:當∠CAB的度數為________時,四邊形ACFD是菱形.

【答案】30°

【解析】(1)連結OC,如圖,由于∠A=OCA,則根據三角形外角性質得∠BOC=2A,而∠ABD=2BAC,所以∠ABD=BOC,根據平行線的判定得到OCBD,再CEBD得到OCCE,然后根據切線的判定定理得CF為⊙O的切線;
(2)根據三角形的內角和得到∠F=30°,根據等腰三角形的性質得到AC=CF,連接AD,根據平行線的性質得到∠DAF=F=30°,根據全等三角形的性質得到AD=AC,由菱形的判定定理即可得到結論.

答:

(1)證明:連結OC,如圖,

OA=OC

∴∠A=OCA,

∴∠BOC=A+OCA=2A

∵∠ABD=2BAC,

∴∠ABD=BOC,

OCBD,

CEBD,

OCCE,

CF為⊙O的切線;

(2)當∠CAB的度數為30°時,四邊形ACFD是菱形,理由如下

∵∠A=30°,

∴∠COF=60°,

∴∠F=30°,

∴∠A=F,

AC=CF,

連接AD

AB是⊙O的直徑,

ADBD

ADCF,

∴∠DAF=F=30°,

ACBADB,

∴△ACB≌△ADB,

AD=AC

AD=CF,

ADCF

∴四邊形ACFD是菱形。

故答案為:30°.

型】解答
束】
22

【題目】經市場調查,某種商品在第x天的售價與銷量的相關信息如下表;已知該商品的進價為每件30元,設銷售該商品每天的利潤為y元.

(1)求出y與x的函數關系式

(2)問銷售該商品第幾天時,當天銷售利潤最大?最大利潤是多少?

(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.

【答案】(1)當1≤x<50時,y=﹣2x2+180x+2000,當50≤x≤90時,y=﹣120x+12000; (2)該商品第45天時,當天銷售利潤最大,最大利潤是6050元;(3)該商品在銷售過程中,共41天每天銷售利潤不低于4800元.

【解析】(1)根據單價乘以數量,可得利潤,可得答案;

(2)根據分段函數的性質,可分別得出最大值,根據有理數的比較,可得答案;

(3)根據二次函數值大于或等于4800,一次函數值大于或等于48000,可得不等式,根據解不等式組,可得答案.

解: (1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000,

50≤x≤90時,y=(200-2x)(90-30)=-120x+12000;

(2)當1≤x<50時,二次函數開口向下,二次函數對稱軸為x=45,

x=45時,y最大=-2×452+180×45+2000=6050,

50≤x≤90時,yx的增大而減小,

x=50時,y最大=6000,

綜上所述,該商品第45天時,當天銷售利潤最大,最大利潤是6050元;

(3)當1≤x<50時,y=-2x2+180x+2000≥4800,解得20≤x≤70,

因此利潤不低于4800元的天數是20≤x<50,共30天;

50≤x≤90時,y=-120x+12000≥4800,解得x≤60,

因此利潤不低于4800元的天數是50≤x≤60,共11天,

所以該商品在銷售過程中,共41天每天銷售利潤不低于4800元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在中,的中垂線交于點延長線于點.若,,則四邊形的面積是(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某文具店第一次用1600元購進了一批新型文具試銷,很快賣完,于是第二次又用5000元購進了這款文具,但第二次的進價是第一次進價的1.25倍,購進數量比第一次多300.

1)求該文具店第一次購進這款文具的進價;

2)已知該文具店將第一次購進的這款文具按50%的利潤率定價銷售完后,第二次購進的這款文具售價在原來售價的基礎上增加5a%,銷售了第二次購進的這款文具的12a%,剩下的這款文具9折處理,銷售一空,結果該文具店前后兩次銷售這款文具共獲利3000元,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD的一邊AB在線段MN上移動,連接MDNC并延長交于點E,MN18

1)當AM4時,求CN長;

2)若∠E90°,求證AMBN

3)△MNE能否為等腰三角形?若能,求出AM的長,若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=13,BC=10,點DBC的中點,DEAB于點E,則tanBDE的值等于(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,OEG的中點,∠EGC的平分線GH過點D,交BE于點H,連接OH,FHEGFH交于點M,對于下面四個結論:①GHBE;②BGEG;③△MFG為等腰三角形;④DEAB1:1,其中正確結論的序號為_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是小元設計的“過圓上一點作圓的切線”的尺規作圖過程.

已知:如圖,⊙O及⊙O上一點P

求作:過點P的⊙O的切線.

作法:如圖,作射線OP

① 在直線OP外任取一點A,以A為圓心,AP為半徑作⊙A,與射線OP交于另一點B

②連接并延長BA與⊙A交于點C;

③作直線PC;

則直線PC即為所求.根據小元設計的尺規作圖過程,

1)使用直尺和圓規,補全圖形;(保留作圖痕跡)

2)完成下面的證明:

證明:∵ BC是⊙A的直徑,

∴ ∠BPC=90° (填推理依據).

OPPC

又∵ OP是⊙O的半徑,

PC是⊙O的切線 (填推理依據).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)解方程:;

2)解不等式組:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是( 。

A. 2 B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视