精英家教網 > 初中數學 > 題目詳情
已知,如圖,平行四邊形ABCD中,BE平分∠ABC交AD于E,若AB=5,BC=8,則AE=
5
5
,DE=
3
3
分析:由平行四邊形的性質及角平分線的定義可得出AB=AE,進而再利用題中數據即可求解結論.
解答:解:在平行四邊形ABCD中,則AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠AEB,即AB=AE=5,
∴DE=AD-AE=8-5=3.
故答案為:5,3.
點評:本題主要考查平行四邊形的性質及角平分線的性質問題,應熟練掌握.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

科目:初中數學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數學 來源:2010-2011學年江蘇省江陰市夏港中學九年級第二學期期中考試數學卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數學 來源:2011-2012學年山東省九年級上學期階段檢測數學卷(解析版) 題型:解答題

已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要證△ADF≌△CBE,因為AE=CF,則兩邊同時加上EF,得到AF=CE,又因為ABCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中數學 來源:2011屆江蘇省江陰市九年級第二學期期中考試數學卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视