【題目】如圖,在ABCD中,∠BAC=90°,∠ABC=60°,E是AD的中點,連結BE交對角線AC于點F,連結DF,則tan∠DFE的值為( 。
A.B.
C.
D.
【答案】B
【解析】
作交BE的延長線于G,作
于H,由直角三角形的性質得出
,得出
,證出
,得出
,得出
,
,
,由直角三角形的性質得出
,
,設
,則
,
,
,由三角函數即可得出結果.
解:作DG⊥BE交BE的延長線于G,作FH⊥AD于H,如圖所示:
∵四邊形ABCD是平行四邊形,∠ABC=60°,
∴AD=BC,∠BAD=120°,
∵∠BAC=90°,∠ABC=60°,
∴∠ACB=30°,∠EAF=30°,
∴BC=2AB,
∵E是AD的中點,
∴AE=DE=AB,
∴∠AEB=30°=∠EAF,
∴AF=EF,
∵FH⊥AD,
∴AE=2EH,EF=2FH,,
∵∠DEG=∠AEB=30°,DG⊥BE,
∴DE=2DG,EG=DG,
設DG=x,則EG=x,AE=DE=2x,EF=
,
∴;
故選:B.
科目:初中數學 來源: 題型:
【題目】定義:有且僅有一組對角相等的凸四邊形叫做“準平行四邊形”.例如:凸四邊形中,若
,則稱四邊形
為準平行四邊形.
(1)如圖①,是
上的四個點,
,延長
到
,使
.求證:四邊形
是準平行四邊形;
(2)如圖②,準平行四邊形內接于
,
,若
的半徑為
,求
的長;
(3)如圖③,在中,
,若四邊形
是準平行四邊形,且
,請直接寫出
長的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數 y=ax2+bx+c 的圖象與 x 軸的交點的橫坐標分別為-1,3,則:
①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意 x 均有 ax2+bx≥a+b,其中結論正確的個數有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了減輕二環高架上汽車的噪音污染,成都市政府計劃在高架上的一些路段的護欄上方增加隔音屏.如圖,工程人員在高架上的車道M處測得某居民樓頂的仰角∠ABC的度數是20°,儀器BM的高是0.8m,點M到護欄的距離MD的長為11m,求需要安裝的隔音屏的頂部到橋面的距離ED的長(結果保留到0.1m,參考數據:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC為⊙O的弦,AD平分∠BAC,交⊙O于點D,DE⊥AC,交AC的延長線于點E.
(1)求證:直線DE是⊙O的切線;
(2)若AE=8,⊙O的半徑為5,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C,E,F,B在同一直線上,點A,D在BC異側,AB∥CD,AE=DF,∠A=∠D.
(1)求證:BE=CF.
(2)若AB=CF,∠B=40°,求∠D的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的部分圖象如圖,則下列說法:①abc>0;②b+2a=0;③b2>4ac;④a+b+c<﹣3,正確的是( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“如果二次函數y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數根.”請根據你對這句話的理解,解決下面問題:若m、n(m<n)是關于x的方程1﹣(x﹣a)(x﹣b)=0的兩根,且a<b,則a、b、m、n的大小關系是( ).
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.
(1)試判斷原方程根的情況;
(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點,則A,B兩點間的距離是否存在最大或最小值?若存在,求出這個值;若不存在,請說明理由.
(友情提示:AB=|x2﹣x1|)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com