【題目】如圖所示,四邊形OABC為正方形,邊長為6,點A、C分別在x軸,y軸的正半軸上,點D在OA上,且D點的坐標為(2,0),P是OB上的一個動點,試求PD+PA和的最小值是
【答案】2
【解析】解:作出D關于OB的對稱點D′,則D′的坐標是(0,2).則PD+PA的最小值就是AD′的長.
則OD′=2,
因而
則PD+PA和的最小值是2 .
故答案是:2 .
【考點精析】解答此題的關鍵在于理解正方形的性質的相關知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形,以及對軸對稱-最短路線問題的理解,了解已知起點結點,求最短路徑;與確定起點相反,已知終點結點,求最短路徑;已知起點和終點,求兩結點之間的最短路徑;求圖中所有最短路徑.
科目:初中數學 來源: 題型:
【題目】把下列各數按要求分類.
﹣4,200%,|﹣1|, ,﹣|﹣10.2|,2,﹣1.5,0,0.123,﹣25%
整數集合:{…},
分數集合:{…},
正整數集合:{…}.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,∠B=60°,那么下列各式中,不能成立的是( )
A.∠D=60°
B.∠A=120°
C.∠C+∠D=180°
D.∠C+∠A=180°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(6分)如圖,已知一次函數與反比例函數的圖象交于點A(﹣4,﹣2)和B(a,4).
(1)求反比例函數的解析式和點B的坐標;
(2)根據圖象回答,當x在什么范圍內時,一次函數的值大于反比例函數的值?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com