精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在四邊形ABCD中,∠DAC=∠ACB,要使四邊形ABCD成為平行四邊形,則應增加的條件不能是(

A.AD=BC
B.OA=OC
C.AB=CD
D.∠ABC+∠BCD=180°

【答案】C
【解析】解:∵∠DAC=∠ACB,
∴AD∥BC,
A、根據平行四邊形的判定有一組對邊平行且相等的四邊形是平行四邊形,不符合題意;
B、可利用對角線互相平分的四邊形是平行四邊形判斷平行四邊形,不符合題意;
C、可能是等腰梯形,故本選項錯誤,符合題意;
D、根據AD∥BC和∠ABC+∠BAD=180°,能推出符合判斷平行四邊形的條件,不符合題意.
故選C.
【考點精析】利用平行四邊形的判定對題目進行判斷即可得到答案,需要熟知兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】以下說法: ①關于x的方程x+ =c+ 的解是x=c(c≠0);
②方程組 的正整數解有2組;
③已知關于x,y的方程組 ,其中﹣3≤a≤1,當a=1時,方程組的解也是方程x+y=4﹣a的解;
其中正確的有(
A.②③
B.①②
C.①③
D.①②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC,DE∥AB.證明:

(1)AE=DC;
(2)四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.

(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為時,四邊形AMDN是矩形;
②當AM的值為時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司為了了解員工每人所創年利潤情況,公司從各部抽取部分員工對每年所創年利潤情況進行統計,并繪制如圖1,圖2統計圖.

(1)將圖補充完整;
(2)本次共抽取員工人,每人所創年利潤的眾數是 , 平均數是;
(3)若每人創造年利潤10萬元及(含10萬元)以上位優秀員工,在公司1200員工中有多少可以評為優秀員工?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解不等式組與方程.
(1)
(2) =

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發,沿同一路線勻速行駛,相向而行,快車到達乙地停留一段時間后,按原路原速返回甲地.慢車到達甲地比快車到達甲地早 小時,慢車速度是快車速度的一半,快、慢兩車到達甲地后停止行駛,兩車距各自出發地的路程y(千米)與所用時間x(小時)的函數圖象如圖所示,請結合圖象信息解答下列問題:

(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時)的函數關系式;
(3)兩車出發后經過多長時間相距90千米的路程?直接寫出答案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了了解學生的體育鍛煉情況,隨機抽查了部分學生一周參加體育鍛煉的時間,得到如圖的條形統計圖,根據圖形解答下列問題:
(1)這次抽查了名學生;
(2)所抽查的學生一周平均參加體育鍛煉多少小時?
(3)已知該校有1200名學生,估計該校有多少名學生一周參加體育鍛煉的時間超過6小時?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某周日上午8:00小宇從家出發,乘車1小時到達某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設小宇離家x(小時)后,到達離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數關系.
(1)活動中心與小宇家相距千米,小宇在活動中心活動時間為小時,他從活動中心返家時,步行用了小時;
(2)求線段BC所表示的y(千米)與x(小時)之間的函數關系式(不必寫出x所表示的范圍);
(3)根據上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视