精英家教網 > 初中數學 > 題目詳情

【題目】計算:2sin30°+31+( ﹣1)0

【答案】解:2sin30°+31+( ﹣1)0=2× + +1﹣2
=
【解析】直接利用特殊角的三角函數值結合零指數冪的性質以及負整數指數冪的性質分別化簡進而求出答案.此題主要考查了實數運算,正確利用相關性質化簡各數是解題關鍵.
【考點精析】解答此題的關鍵在于理解零指數冪法則的相關知識,掌握零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數),以及對整數指數冪的運算性質的理解,了解aman=am+n(m、n是正整數);(amn=amn(m、n是正整數);(ab)n=anbn(n是正整數);am/an=am-n(a不等于0,m、n為正整數);(a/b)n=an/bn(n為正整數).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】4月26日,2015黃河口(東營)國際馬拉松比賽拉開帷幕,中央電視臺體育頻道用直升機航拍技術全程直播.如圖,在直升機的鏡頭下,觀測馬拉松景觀大道A處的俯角為30°,B處的俯角為45°.如果此時直升機鏡頭C處的高度CD為200米,點A、D、B在同一直線上,則AB兩點的距離是米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若a+b=﹣2,且a≥2b,則(
A. 有最小值
B. 有最大值1
C. 有最大值2
D. 有最小值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB∥CD,AE平分∠CAB.AE與CD相交于點E,∠ACD=40°,則∠BAE的度數是(  )
A.40°
B.70°
C.80°
D.140°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,∠A=2∠BCD,點E在AB的延長線上,∠AED=∠ABC
(1)求證:DE與⊙O相切;
(2)若BF=2,DF= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當BD是⊙O的直徑時(如圖2),求∠CAD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BD于E,CF⊥BD于F,連接AF,CE.求證:AF=CE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】楊陽同學沿一段筆直的人行道行走,在由A步行到達B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標語,其具體信息匯集如下: 如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據上述信息求標語CD的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,一次函數y=2x+2的圖象與x軸交于A,與y軸交于點C,點B的坐標為(a,0),(其中a>0),直線l過動點M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點D、E,P點在y軸上(P點異于C點)滿足PE=CE,直線PD與x軸交于點Q,連接PA.

(1)寫出A、C兩點的坐標;
(2)當0<m<1時,若△PAQ是以P為頂點的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點的倍邊三角形),求出m的值;
(3)當1<m<2時,是否存在實數m,使CDAQ=PQDE?若能,求出m的值(用含a的代數式表示);若不能,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视