【題目】慈氏塔位于岳陽市城西洞庭湖邊,是湖南省保存最好的古塔建筑之一.如圖,小亮的目高CD為1.7米,他站在D處測得塔頂的仰角∠ACG為45°,小琴的目高EF為1.5米,她站在距離塔底中心B點a米遠的F處,測得塔頂的仰角∠AEH為62.3°.(點D、B、F在同一水平線上,參考數據:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)
(1)求小亮與塔底中心的距離BD;(用含a的式子表示)
(2)若小亮與小琴相距52米,求慈氏塔的高度AB.
【答案】(1)小亮與塔底中心的距離BD(1.9a﹣0.2)米;(2)慈氏塔的高度AB為36.1米.
【解析】
(1)由題意得,四邊形CDBG、HBFE為矩形,求得GH=0.2,在Rt△AHE中,利用∠AEH的正切求得AH≈1.9a,從而得AG=1.9a﹣0.2,在Rt△ACG中,根據等腰直角三角形的性質求得CG=AG=1.9a﹣0.2,由此即可求得答案;
(2)由題意可得關于a的方程,解方程求得a的值即可得答案.
(1)由題意得,四邊形CDBG、HBFE為矩形,
∴GB=CD=1.7,HB=EF=1.5,
∴GH=0.2,
在Rt△AHE中,tan∠AEH=,
則AH=HEtan∠AEH≈1.9a,
∴AG=AH﹣GH=1.9a﹣0.2,
在Rt△ACG中,∠ACG=45°,
∴CG=AG=1.9a﹣0.2,
∴BD=1.9a﹣0.2,
答:小亮與塔底中心的距離BD(1.9a﹣0.2)米;
(2)由題意得,1.9a﹣0.2+a=52,
解得,a=18,
則AG=1.9a﹣0.2=34.4,
∴AB=AG+GB=36.1,
答:慈氏塔的高度AB為36.1米.
科目:初中數學 來源: 題型:
【題目】某公司經銷的一種產品每件成本為40元,要求在90天內完成銷售任務.已知該產品90天內每天的銷售價格與時間(第x天)的關系如下表:
時間(第x天) | 1≤x<50 | 50≤x≤90 |
x+50 | 90 |
任務完成后,統計發現銷售員小王90天內日銷售量p(件)與時間(第x天)滿足一次函數關系p=﹣2x+200.設小王第x天銷售利潤為W元.
(1)直接寫出W與x之間的函數關系式,井注明自變量x的取值范圍;
(2)求小生第幾天的銷售量最大?最大利潤是多少?
(3)任務完成后,統計發現平均每個銷售員每天銷售利潤為4800公司制定如下獎勵制度:如果一個銷售員某天的銷售利潤超過該平均值,則該銷售員當天可獲得200元獎金.請計算小王一共可獲得多少元獎金?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】受“新冠”疫情影響,全國中小學延遲開學,很多學校都開展起了“線上教學”,市場上對手寫板的需求激增.重慶某廠家準備3月份緊急生產A,B兩種型號的手寫板,若生產20個A型號和30個B型號手寫板,共需要投入36000元;若生產30個A型號和20個B型號手寫板,共需要投入34000元.
(1)請問生產A,B兩種型號手寫板,每個各需要投入多少元的成本?
(2)經測算,生產的A型號手寫板每個可獲利200元,B型號手寫板每個可獲利400元,該廠家準備用10萬元資金全部生產這兩種手寫板,總獲利w元,設生產了A型號手寫板a個,求w關于a的函數關系式;
(3)在(2)的條件下,若要求生產A型號手寫板的數量不能少于B型號手寫板數量的2倍,請你設計出總獲利最大的生產方案,并求出最大總獲利.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在中,弦
,連接
、
;
(1)如圖1,求證:;
(2)如圖2,在線段上取點
,連接
并延長交
于點
,
交
于點
,
,連接
、
、
,
,求
的正切值;
(3)如圖3,在(2)的條件下,交
于點
,
,
,求線段
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某班甲、乙、丙三位同學最近5次數學成績及其所在班級相應平均分的折線統計圖,則下列判斷錯誤的是( ).
A. 甲的數學成績高于班級平均分,且成績比較穩定
B. 乙的數學成績在班級平均分附近波動,且比丙好
C. 丙的數學成績低于班級平均分,但成績逐次提高
D. 就甲、乙、丙三個人而言,乙的數學成績最不穩
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AD是△ABC的中線P是線段AD上的一點(不與點A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點,AD與EF交于點M;
(1)如圖1,當AB=AC時,求證:四邊形EGHF是矩形;
(2)如圖2,當點P與點M重合時,在不添加任何輔助線的條件下,寫出所有與△BPE面積相等的三角形(不包括△BPE本身).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在菱形ABCD 中,點E,O,F分別是邊AB,AC,AD的中點,連接CE、CF、OE、OF.
(1)求證:△BCE≌△DCF;
(2)當AB與BC滿足什么條件時,四邊形AEOF正方形?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com