精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,矩形AOCB的兩邊OA,OC分別在x軸和y軸上,且OA2OC1,則矩形AOCB的對稱中心的坐標是___;在第二象限內,將矩形AOCB以原點O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點O為位似中心放大倍,得到矩形A2OC2B,,按此規律,則矩形A4OC4B4的對稱中心的坐標是___

【答案】(﹣1,), (﹣,).

【解析】

先利用矩形的性質寫出B點坐標,則根據線段中點坐標公式可寫出矩形AOCB的對稱中心的坐標;再利用以原點為位似中心的對應點的坐標之間的關系分別寫出B1、B2、B3、B4的坐標,然后矩形A4OC4B4的對稱中心的坐標.

解:∵OA=2OC=1,
B-21),
∴矩形AOCB的對稱中心的坐標為(-1),
∵將矩形AOCB以原點O為位似中心放大為原來的倍,得到矩形A1OC1B1,
B1-3,),
同理可得B2-,),B3-,),B4-,),

∴矩形A4OC4B4的對稱中心的坐標是(﹣,).

故答案為:(-1),(﹣,).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,點Ax軸負半軸上一個定點,點P是函數上一個動點,軸于點B,當點P的橫坐標逐漸增大時,四邊形OAPB的面積將會  

A. 先增后減 B. 先減后增 C. 逐漸減小 D. 逐漸增大

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】函數yaxaya≠0)在同一直角坐標系中的圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對垃圾進行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護環境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區內的A,B,CD四個小區進行檢查,并且每個小區不重復檢查.

1)甲組抽到A小區的概率是多少;

2)請用列表或畫樹狀圖的方法求甲組抽到A小區,同時乙組抽到C小區的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,G是正方形ABCD對角線AC上一點,作GEAD,GFAB,垂足分別為點E、F.

求證:四邊形AFGE與四邊形ABCD相似.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD和正方形CGFE的頂點CD,E在同一條直線上,頂點B,CG在同一條直線上.OEG的中點,∠EGC的平分線GH過點D,交BE于點H,連接FHEG于點M,連接OH.以下四個結論:GHBE;EHM∽△GHF;1;2,其中正確的結論是( 。

A. ①②③B. ①②④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時20nmile的速度向正東方向航行,到達A處時得燈塔D在東北方向上,繼續航行0.3h,到達B處時測得燈塔D在北偏東30°方向上,同時測得島嶼C恰好在B處的東北方向上,此時快艇與島嶼C的距離是多少?(結果精確到1nmile.參考數據:1.41,1.732.45

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC內接于⊙OADBC是⊙O的直徑,延長線段AC至點G,使AGAD,連接DG交⊙O于點EEFABAG于點F

1)求證:EF與⊙O相切.

2)若EF2,AC4,求扇形OAC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3a,兩動點E,F分別從頂點BC同時開始以相同速度沿邊BC,CD運動,與BCF相應的EGH在運動過程中始終保持EGH≌△BCF,對應邊EGBC,B,EC,G在一條直線上.

1)若BEa,求DH的長;

2)當E點在BC邊上的什么位置時,DHE的面積取得最小值?并求該三角形面積的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视