【題目】如圖,在平面直角坐標系中,O為坐標原點,ABCD的邊AB在x軸上,頂點D在y軸的正半軸上,點C在第一象限,將△AOD沿y軸翻折,使點A落在x軸上的點E處,點B恰好為OE的中點,DE與BC交于點F.若y(k≠0)圖象經過點C,且S△BEF=1,則k的值為________.
【答案】24
【解析】
連接OC,BD,根據折疊的性質得到OA=OE,得到OE=2OB,求得OA=2OB,設OB=BE=x,則OA=2x,根據平行四邊形的性質得到CD=AB=3x,根據相似三角形的性質得到,求得S△BDF=3,S△CDF=9,于是得到結論.
解:如圖,連接OC,BD,
∵將△AOD沿y軸翻折,使點A落在x軸上的點E處,
∴OA=OE,
∵點B恰好為OE的中點,
∴OE=2OB,
∴OA=2OB,
設OB=BE=x,則OA=2x,
∴AB=3x,
∵四邊形ABCD是平行四邊形,
∴CD=AB=3x,
∵CD∥AB,
∴△CDF∽△BEF,
∴,
∵S△BEF=1,
∴S△BDF=3,S△CDF=9,
∴S△BCD=12,
∴S△CDO=S△BDC=12,
∴k的值=2S△CDO=24.
科目:初中數學 來源: 題型:
【題目】如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置P的鉛直高度PB.(測傾器高度忽略不計,結果保留根號形式)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學綜合實踐課上,老師提出問題:如圖,有一張長為,寬為
的長方形紙板,在紙板四個角剪去四個相同的小正方形,然后把四邊折起來(實線為剪裁線,虛線為折疊線),做成一個無蓋的長方體盒子,問小正方形的邊長為多少時,盒子的體積最大?為了解決這個問題,小明同學根據學習函數的經驗,進行了如下的探究:
(1)設小正方形的邊長為,長方體體積為
,根據長方體的體積公式,可以得到
與
的函數關系式是 ,其中自變量
的取值范圍是 ;
(2)列出與
的幾組對應值如下表:
… | 1 | … | ||||||||||
… | 1.3 | 2.2 | 2.7 | 3.0 | 2.8 | 2.5 | 1.5 | 0.9 | … |
(注:補全表格,保留1位小數點)
(3)如圖,請在平面直角坐標系中描出以補全后表格中各對對應值為坐標的點,畫出該函數圖象;
(4)結合函數圖象回答:當小正方形的邊長約為 時,無蓋長方體盒子的體積最大,最
大值約為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分點,AE、CF的延長線分別交DC、AB于N、M點,那么四邊形MENF的面積是( )
A.B.
C.2
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解中學生對《最強大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個電視節目的喜愛情況,隨機抽取了名學生進行調查統計(要求每名學生選出并且只能選出一個自己最喜愛的節目),并將調查結果繪制成如圖統計圖表:
節目 | 人數(名) | 百分比 |
最強大腦 | ||
朗讀者 | ||
中國詩詞大會 | ||
出彩中國人 |
根據以上提供的信息.解答下列問題:
,
,
;
補全上面的條形統計圖;
名女同學.其余為男同學,現要從中隨機抽取
名同學代表學校參加市里組織的競賽活動,請求出所抽取的
名同學恰好是
名男同學和
名女同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點B向下旋轉45°,使得BCD落在BC′D′的位置(如圖3所示),此時C′D′⊥OM,AD′∥OM,AD′=16cm,求點B到水平桌面OM的距離,(參考數據:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結果精確到1cm)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與y軸交于點,與反比例函數
在第二象限內的圖象相交于點
.
(1)求直線AB的解析式;
(2)將直線AB向下平移9個單位后與反比例函數的圖象交于點C和點E,與y軸交于點D,求的面積;
(3)設直線CD的解析式為,根據圖象直接寫出不等式
的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是
上的四個點,連接
交
于點
,過點
作
交
的延長線于點
,延長
交直線
于點
(1)判斷四邊形的形狀并說明理由;
(2)求證:是
的切線:
(3)若求
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com