【題目】如圖所示,將沿直線BC方向平移
的位置,G是DE上一點,連接AG,過點A、D作直線MN.
(1)求證:;
(2)若,
,判斷AG與DE的位置關系,并證明你的結論.
【答案】(1)見解析;(2)見解析.
【解析】(1)利用平移的性質得到AB與DE平行且相等,得到四邊形ABED為平行四邊形,利用平行四邊形的性質得到對角相等,利用外角性質即可得證;
(2)AG垂直與DE,理由為:由平移的性質得到∠EDF=∠BAC,根據∠EDF=∠DAG,等量代換得到∠BAC=∠DAG,由AB與DE平行,利用兩直線平行同旁內角互補得到一對角互補,等量代換得到∠ABC=∠CAG,利用等式的性質及平行線的性質即可得證.
(1)由平移的性質得:△ABC≌△DEF,
∴AB=DE,AB∥DE,
∴四邊形ABED為平行四邊形,
∴AD∥BF,∠ADG=∠ABC,
∴∠ADG=∠DEF,
∴∠ABC=∠DEF=∠ADG,
∵∠AGE為△ADG的外角,
∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC;
(2)AG⊥DE,理由為:
由平移的性質得到∠EDF=∠BAC,
∵∠EDF=∠DAG,
∴∠BAC=∠DAG,
∵AB∥DE,
∴∠ABC+∠BEG=180°,
∵∠CAG+∠CEG=180°,
∴∠ABC=∠CAG,
∵MN∥BC,∴∠ABC=∠MAB,
∴∠MAB=∠CAG,
∵∠MAB+∠BAC+∠CAG+∠DAG=180°,
∴∠CAG+∠BAC=90°,即∠BAG=90°,
∵AB∥DE,
∴∠BAG+∠AGD=90°,
則AG⊥DE.
科目:初中數學 來源: 題型:
【題目】隨著我市社會經濟的發展和交通狀況的改善,我市的旅游業得到了高速發展某旅游公司對我市一企業個人旅游年消費情況進行問卷調查
隨機抽取部分員工,記錄每個人年消費金額,并將調查數據適當整理,繪制成如下兩幅尚不完整的表和圖:
組別 | 個人年消費金額 | 頻數 | 頻率 |
A |
| 18 |
|
B |
| a | b |
C |
|
|
|
D |
| 24 |
|
E |
| 12 |
|
合計 | c |
|
根據以上信息解答下列問題:
________;
________;
________;
補全頻數分布直方圖;
若這個企業有3000名員工,請你估計個人旅游年消費金額在6000元以上的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經過A(﹣2,0),B(4,0),C(0,3)三點.
(1)求該拋物線的解析式;
(2)在y軸上是否存在點M,使△ACM為等腰三角形?若存在,請直接寫出所有滿足要求的點M的坐標;若不存在,請說明理由;
(3)若點P(t,0)為線段AB上一動點(不與A,B重合),過P作y軸的平行線,記該直線右側與△ABC圍成的圖形面積為S,試確定S與t的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為深化義務教育課程改革,滿足學生的個性化學習需求,某校就“學生對知識拓展,體育特長、藝術特長和實踐活動四類選課意向”進行了抽樣調查(每人選報一類),繪制了如圖所示的兩幅統計圖(不完整),請根據圖中信息,解答下列問題:
(1)求扇形統計圖中m的值,并補全條形統計圖;
(2)在被調查的學生中,隨機抽一人,抽到選“體育特長類”或“藝術特長類”的學生的概率是多少?
(3)已知該校有800名學生,計劃開設“實踐活動類”課程每班安排20人,問學校開設多少個“實踐活動類”課程的班級比較合理?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點E,F分別是ABCD的邊BC,AD上的中點,且∠BAC=90°.
(1)求證:四邊形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論中正確的是( )
A.a>0
B.3是方程ax2+bx+c=0的一個根
C.a+b+c=0
D.當x<1時,y隨x的增大而減小
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ADB、△BCD都是等邊三角形,點E,F分別是AB,AD上兩個動點,滿足AE=DF.連接BF與DE相交于點G,CH⊥BF,垂足為H,連接CG.若DG=,BG=
,且
、
滿足下列關系:
,
,則GH= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F為垂足,下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結論有________(填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數軸是初中數學的一個重要工具,利用數軸可以將數與形完美地結合,研究數軸我們發現:若數軸上點A、點B表示的數分別為a、b,則A,B兩點之間的距離AB=|a﹣b|,線段AB的中點表示的數為.如:如圖,數軸上點A表示的數為﹣2,點B表示的數為8,則A、兩點間的距離AB=|﹣2﹣8|=10,線段AB的中點C表示的數為
=3,點P從點A出發,以每秒3個單位長度的速度沿數軸向右勻速運動,同時點Q從點B出發,以每秒2個單位長度的速度向左勻速運動.設運動時間為t秒(t>0).
(1)用含t的代數式表示:t秒后,點P表示的數為 ,點Q表示的數為 .
(2)求當t為何值時,P、Q兩點相遇,并寫出相遇點所表示的數;
(3)求當t為何值時,PQ=AB;
(4)若點M為PA的中點,點N為PB的中點,點P在運動過程中,線段MN的長度是否發生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com