【題目】如圖,在中,
, 點
是邊
上一動點(不與
重合),
=
交
于點
,且
,則線段
的最大值為___.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=,經過點A(1,3)、B(0,1),過點A作x軸的平行線交拋物線于另一點C.
(1)求拋物線的表達式及其頂點坐標;
(2)如圖,點G是BC上方拋物線上的一個動點,分別過點G作GH⊥BC于點H、作GE⊥x軸于點E,交BC于點F,在點G運動的過程中,△GFH的周長是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,A(﹣3,2),B(0,1),將線段AB沿x軸的正方向平移n(n>0)個單位,得到線段A′,B′恰好都落在反比例函數y(m≠0)的圖象上.
(1)用含n的代數式表示點A′,B′的坐標;
(2)求n的值和反比例函數y(m≠0)的表達式;
(3)點C為反比例函數y(m≠0)圖象上的一個動點,直線CA′與x軸交于點D,若CD=2A′D,請直接寫出點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知矩形ABCD的一邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.
(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.求證:△OCP∽△PDA;
(2)若圖1中△OCP與△PDA的面積比為1:4,求邊AB的長
(3)如圖2,在(2)的條件下,擦去折痕AO、線段OP,連接BP,動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交與PB點F,作ME⊥BP于點E,試問當點M、N在移動過程中,線段EF的長度是否發生變化?若變化,說明理由;若不變,求出線段EF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,點為線段
外一動點,且
,
,填空:當點
位于__________時,線段
的長取到最大值__________,且最大值為;(用含
、
的式子表示).
(2)如圖2,若點為線段
外一動點,且
,
,分別以
,
為邊,作等邊
和等邊
,連接
,
.
①圖中與線段相等的線段是線段__________,并說明理由;
②直接寫出線段長的最大值為__________.
(3)如圖3,在平面直角坐標系中,點的坐標為
,點
的坐標為
,點
為線段
外一動點,且
,
,
,請直接寫出線段
長的最大值為__________,及此時點
的坐標為__________.(提示:等腰直角三角形的三邊長
、
、
滿足
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.
(1)求A、B兩種鋼筆每支各多少元?
(2)若該文具店要購進A,B兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數量少于B種鋼筆的數量,那么該文具店有哪幾種購買方案?
(3)文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎上再購進一批B種鋼筆,漲價賣出,經統計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設文具店將新購進的B種鋼筆每支漲價a元(a為正整數),銷售這批鋼筆每月獲利W元,試求W與a之間的函數關系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,網格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的是格點三角形.在建立平面直角坐標系后,點
的坐標為
.
(1)把向下平移5格后得到
,寫出點
,
,
的坐標,并畫出
;
(2)把繞點
按順時針方向旋轉
后得到
,寫出點
,
,
的坐標,并畫出
;
(3)把以點
為位似中心放大得到
,使放大前后對應線段的比為
,寫出點
,
,
的坐標,并畫出
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,∠A=2∠BCD,點E在AB的延長線上,∠AED=∠ABC
(1)求證:DE與⊙O相切;
(2)若BF=2,DF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2的圖象如圖所示.已知A點坐標為(1,1),過點A作AA1∥x軸交拋物線于點A1,過點A1作A1A2∥OA交拋物線于點A2,過點A2作A2A3∥x軸交拋物線于點A3,過點A3作A3A4∥OA交拋物線于點A4……,依次進行下去,則點A2019的坐標為_______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com