精英家教網 > 初中數學 > 題目詳情

【題目】為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統計圖表:

獲獎等次

頻數

頻率

一等獎

10

0.05

二等獎

20

0.10

三等獎

30

b

優勝獎

a

0.30

鼓勵獎

80

0.40

請根據所給信息,解答下列問題:
(1)a= , b= , 且補全頻數分布直方圖;
(2)若用扇形統計圖來描述獲獎分布情況,問獲得優勝獎對應的扇形圓心角的度數是多少?
(3)若我市初中生共有16000人,競賽活動獲獎率為40%,獲三等獎以上的學生表示對“足球比較喜歡”,請你估計我市初中生對“足球比較喜歡”的有多少人?

【答案】
(1)60;0.15;
(2)解:優勝獎所在扇形的圓心角為0.30×360°=108°
(3)解:16000×40%×(0.05+0.10)=960(人).

答:獲三等獎以上的學生表示對“足球比較喜歡”,請你估計我市初中生對“足球比較喜歡”的有960人


【解析】解:(1)樣本總數為10÷0.05=200人, a=200﹣10﹣20﹣30﹣80=60人,
b=30÷200=0.15,
所以答案是60,0.15;
【考點精析】關于本題考查的頻數分布直方圖和扇形統計圖,需要了解特點:①易于顯示各組的頻數分布情況;②易于顯示各組的頻數差別.(注意區分條形統計圖與頻數分布直方圖);能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數目以及事物的變化情況才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】振興中學某班的學生對本校學生會倡導的抗震救災,眾志成城自愿捐款活動進行抽樣調查,得到了一組學生捐款情況的數據.下圖是根據這組數據繪制的統計圖,圖中從左到右各長方形的高度之比為34586,又知此次調查中捐款25元和30元的學生一共42.

(1)他們一共調查了多少人?

(2)這組數據的眾數、中位數各是多少?

(3)若該校共有1560名學生,估計全校學生捐款多少元.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=ACAO=AD,∠BAC=∠OAD=90°,點O是△ABC內的一點,BOC=130°.

(1)求證:OB=DC;

(2)求DCO的大;

(3)設AOB=α,那么當α為多少度時,△COD是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)3﹣2

(2)(2﹣)(2+)+(2﹣2

(3)解方程組

(4)

(5)求x的值:25(x+2)2﹣36=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在數軸上有三個點A、B、C,完成下列問題:

(1)將點B向右移動六個單位長度到點D,在數軸上表示出點D.

(2)在數軸上找到點E,使點EBA的中點(EA、C兩點的距離相等),井在數軸上標出點E表示的數,求出CE的長.

(3)O為原點,取OC的中點M,分OC分為兩段,記為第一次操作:取這兩段OM、CM的中點分別為了N1、N2,將OC分為4段,記為第二次操作,再取這兩段的中點將OC分為8段,記為第三次操作,第六次操作后,OC之間共有多少個點?求出這些點所表示的數的和.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:在平行四邊形ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求證:
(1)△AEH≌△CGF;
(2)四邊形EFGH是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知反比例函數y= 的圖象經過點A(﹣ ,1).
(1)試確定此反比例函數的解析式;
(2)點O是坐標原點,將線段OA繞O點順時針旋轉30°得到線段OB.判斷點B是否在此反比例函數的圖象上,并說明理由;
(3)已知點P(m, m+6)也在此反比例函數的圖象上(其中m<0),過P點作x軸的垂線,交x軸于點M.若線段PM上存在一點Q,使得△OQM的面積是 ,設Q點的縱坐標為n,求n2﹣2 n+9的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在熱氣球上A處測得塔頂B的仰角為52°,測得塔底C的俯角為45°,已知A處距地面98米,求塔高BC.(結果精確到0.1米)
【參考數據:sin52°=0.79,cos52°=0.62,tan52°=1.28】

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,底面積為30cm2的空圓柱容器內水平放置著由兩個實心圓柱組成的“幾何體”,現向容器內勻速注水,注滿為止,在注水過程中,水面高度h(cm)與注水時間t(s)之間的關系如圖②.
(1)求圓柱形容器的高和勻速注水的水流速度;
(2)若“幾何體”的下方圓柱的底面積為15cm2 , 求“幾何體”上方圓柱體的高和底面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视