【題目】如圖,△ABC是等邊三角形,點D是線段AC上的一動點,E在BC的延長線上,且BD=DE.
(1)如圖1,若點D為線段AC的中點,求證:AD=CE;
(2)如圖2,若點D為線段AC上任意一點,試確定線段AD與CE的大小關系,并說明理由.
【答案】(1)詳見解析;(2)AD=CE,理由詳見解析.
【解析】
(1)根據等邊三角形三線合一的性質即可求得∠DBC的度數,再根據BD=DE可求得∠E的度數,進而可求得∠CDE的度數,于是可判斷CD與CE的關系,進一步即可得出結論;
(2)作DF∥AB,利用AAS可證△BDF≌△EDC,得BF=CE,再證AD=BF即可,而易證△DCF是等邊三角形,所以CF=CD,再根據CA=CB,問題即得解決.
解:(1)∵△ABC是等邊三角形,點D為線段AC的中點,
∴BD平分∠ABC,∠ABC=∠ACB=60°,∴∠DBE=30°,
∵BD=DE,∴∠E=∠DBE=30°,
∵∠DCE=180°﹣∠ACB=120°,
∴∠CDE=180°﹣120°﹣30°=30°,即∠E=∠CDE,
∴CD=CE,
∴AD=CE;
(2)作DF∥AB交BC于點F,如圖2,
∵DF∥AB,∴∠DFC=∠ABC=60°,∠FDC=∠A=60°,
∴△DCF是等邊三角形,
∴CF=CD,∵CA=CB,∴BF=AD,
∵∠DFC=60°,∴∠BFD=120°,
∵∠ACB=60°,∴∠ACE=120°,
∴∠BFD=∠ECD,
∵BD=DE,∴∠E=∠DBE,
在△BDF和△EDC中,,
∴△BDF≌△EDC(AAS),
∴BF=CE,
∴AD=CE.
科目:初中數學 來源: 題型:
【題目】(10分)如圖①,將兩塊全等的三角板拼在一起,其中△ABC的邊BC在直線l上,AC⊥BC且AC = BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,EF⊥FP且EF = FP。
(1)在圖①中,請你通過觀察、測量,猜想并寫出AB與AP所滿足的數量關系和位置關系;
(2)將三角板△EFP沿直線l向左平移到圖②的位置時,EP交AC于點Q,連接AP、BQ。猜想并寫出BQ與AP所滿足的數量關系和位置關系,并證明你的猜想;
(3)將三角板△EFP沿直線l向左平移到圖③的位置時,EP的延長線交AC的延長線于點Q,連接AP、BQ。你認為(2)中猜想的BQ與AP所滿足的數量關系和位置關系還成立嗎?若成立,給出證明;若不成立,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某區對即將參加中考的5000名初中畢業生進行了一次視力抽樣調查,繪制出頻數分布表和頻數分布直方圖的一部分.
請根據圖表信息回答下列問題:
視力 | 頻數(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次調查的樣本為________,樣本容量為_______;
(2)在頻數分布表中,a=______,b=______,并將頻數分布直方圖補充完整;
(3)若視力在4.6以上(含4.6)均屬正常,根據上述信息估計全區初中畢業生中視力正常的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,我們在“格點”直角坐標系上可以看到:要找或
的長度,可以轉化為求
或
的斜邊長.
例如:從坐標系中發現:,
,所以
,
,所以由勾股定理可得:
.
(1)在圖①中請用上面的方法求線段的長:
______;在圖②中:設
,
,試用
,
,
,
表示:
______.
(2)試用(1)中得出的結論解決如下題目:已知:,
,
為
軸上的點,且使得
為等腰三角形,請求出
點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形的周長為32cm,一個內角的度數是60°,則兩條對角線的長分別是( )
A. 8cm和4cm B. 4cm和8
cm C. 8cm和8
cm D. 4cm和4
cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CD、CE分別是△ABC的高和角平分線.
(1)若∠A=30°,∠B=50°,求∠ECD的度數;
(2)試用含有∠A、∠B的代數式表示∠ECD(不必證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】食品加工是一種專業技術,就是把原料經過人為處理形成一種新形式的可直接食用的產品,這個過程就是食品加工.比如用小麥經過碾磨、篩選、加料攪拌、成型烘干,成為餅干,就是屬于食品加工的過程.下表給出了甲、乙、丙三種原料中的維生素A、B的含量(單位:g/kg).
原料甲 | 原料乙 | 原料丙 | |
維生素A的含量 | 4 | 6 | 4 |
維生素B的含量 | 8 | 2 | 4 |
將甲、乙、丙三種原料共100kg混合制成一種新食品,其中原料甲xkg,原料乙ykg.
(1)這種新食品中,原料丙的含量__________kg,維生素B的含量__________g;(用含、
的式子表示)
(2)若這種新食品中,維生素A的含量至少為440g,維生素B的含量至少為480g,請你證明:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格圖中建立一直角坐標系,一條圓弧經過網格點A、B、C,請在網格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數;
(3)若扇形DAC是某一個圓錐的側面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com