精英家教網 > 初中數學 > 題目詳情

如圖,△ABC為等腰三角形,AB=AC,O是底邊BC的中點,⊙O與腰AB相切于點D,

求證AC與⊙O相切。

 

.證明:連結OD,過點O作OE⊥AC于E點,∵AB切⊙O于D,∴OD⊥AB.∴∠ODB=∠OEC=90°.又∵O是BC的中點,∴OB=OC.∵AB=AC,∴∠B=∠C.∴△OBE≌△OCE.∴OE=OD,即OE是⊙O的半徑.∴AC與⊙O相切.

解析:略

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

2、如圖,△ABC為等腰三角形,AB=AC,∠A=40°,D,E,F分別在BC,AC,AB上,且CE=CD,BD=BF,則∠EDF的度數為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,△ABC為等腰直角三角形,它的面積為8平方厘米,以它的斜邊為邊的正方形BCDE的面積為( 。┢椒嚼迕祝
A、16B、24C、64D、32

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC為等腰直角三角形∠BAC=90°,AD是斜邊BC上的中線,△ABD旋轉到△ACE的位置.
(1)旋轉中心是哪一點?旋轉角度是多少度?
(2)四邊形ADCE是正方形嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•六合區一模)如圖,△ABC為等腰直角三角形,∠C=90°,若在某一平面直角坐標系中,頂點C的坐標為(1,1),B的坐標為(2,0).則頂點A的坐標是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC為等腰三角形,如果把它沿底邊BC翻折后,得到△DBC,那么四邊形ABDC為( 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视