精英家教網 > 初中數學 > 題目詳情

【題目】已知,如圖,在ABC中,P是邊AB上一點,ADCP,BECP,垂足分別為D、E,AC3,BC3,BE5,DC.求證:

1RtACDRtCBE

2ACBC.

【答案】1)見解析;(2)見解析

【解析】

1)根據兩邊的比值相等以及其夾角相等的兩個三角形相似證明即可;
2)利用相似三角形的性質可得:∠ACD=CBE,因為∠CBE+ECD=90°所以∠ACD+ECB=90°,即ACBC

1)∵ADCP,BECP,

∴∠E=∠ADC90°,

AC3,BC3,BE5,DC

,

RtACDRtCBE;

2)∵RtACDRtCBE,

∴∠ACD=∠CBE

∵∠CBE+ECB90°,

∴∠ACD+ECB90°,即∠ACB90°,

ACBC.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知長方形硬紙板ABCD的長BC為40cm,寬CD為30cm,按如圖所示剪掉2個小正方形和2個小長方形(即圖中陰影部分),將剩余部分折成一個有蓋的長方體盒子,

設剪掉的小正方形邊長為xcm.(紙板的厚度忽略不計)

(1)填空:EF= .cm,GH= .cm;(用含x的代數式表示)

(2)若折成的長方體盒子的表面積為950cm2,求該長方體盒子的體積

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對某一個函數給出如下新定義:若存在實數M>0,對于任意的函數值y,都滿足-M≤y≤M,則稱這個函數是存界函數,在所有滿足條件的M中,其最小值稱為這個函數的界值。例如,下圖中的函數是存界函數,其界值是1

1)分別判斷函數x>1)和(-4<x≤2)是不是存界函數?若是存界函數求其界值;

2)若函數axb,b>a)的界值是2,且這個函數的最大值也是2,求b的取值范圍:

3)將函數(-1≤xm,m≥0)的圖象向下平移m個單位,得到的函數的界值是t,若使t≤1,則直接寫出m的取值范圍是_____________________________。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD,∠BAD的平分線交BC于點E,DC的延長線于點F.

1)若AB=2,AD=3,EF的長;

2)若GEF的中點,連接BGDG,求證:DG=BG.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D是等邊ABCAB上的一點,且ADDB12,現將ABC折疊,使點CD重合,折痕為EF,點E、F分別在ACBC上,則CECF=(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,DEAB的垂直平分線,AD恰好平分∠BAC.若DE1,則BC的長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點DAB上,以AD為直徑的⊙O與邊BC相切于點E,與邊AC相交于點G,且,連接GO并延長交⊙O于點F,連接BF

1)求證:①AOAG,②BF是⊙O的切線.

2)若BD6,求圖形中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】菱形的對角線相交于O,以O為圓心,以點O到菱形一邊的距離為半徑的⊙O與菱形其它三邊的位置關系是(

A. 相交B. 相離C. 相切D. 無法確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司研發了一款成本為50元的新型玩具,投放市場進行試銷售.其銷售單價不低于成本,按照物價部門規定,銷售利潤率不高于90%,市場調研發現,在一段時間內,每天銷售數量y(個)與銷售單價x(元)符合一次函數關系,如圖所示:

1)根據圖象,直接寫出yx的函數關系式;

2)該公司要想每天獲得3000元的銷售利潤,銷售單價應定為多少元

3)銷售單價為多少元時,每天獲得的利潤最大,最大利潤是多少元?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视