【題目】在平面直角坐標系中,函數的圖像記為
,函數
的圖像記為
,其中
為常數,且
,圖像
、
,合起來得到的圖像標記為
.
(1)求圖像與
軸的交點坐標.
(2)當圖像的最低點到
軸距離為3時,求
的值.
(3)當時,若點
在圖像
上,求
的值.
(4)點、
的坐標分別為
、
,連接
與圖像
有兩個交點時
的取值范圍.
【答案】(1)();(2)
;(3)
或
;(4)
,
,
.
【解析】
(1)令M1的函數值等于0,即求出x的兩個解,取正數解.
(2)因為提到“最低點”,所以函數圖象M1對應的拋物線開口向上,a>0,令頂點縱坐標=3即求出a的值.
(3)把點在圖象M1或圖象M2進行分類討論,把a=1和y=-代入解析式即求出m的值.
(4)把a>0和a<0時圖象M的大致草圖畫出,根據圖象觀察和計算說明線段PQ所在位置對交點個數的影響,得到a的范圍.
(1)當ax2-2ax-4a=0時,
∵a≠0,
∴x2-2x-4=0
解得:x1=1+,x2=1-
∵x≥0,
∴圖象M1與x軸的交點坐標為(1+,0)
(2)∵y=ax2-2ax-4a=a(x-1)2-5a,且圖象M1的最低點到x軸距離為3
∴a>0,
∴|-5a|=3,即-5a=-3
∴a=
(3)當a=1時,點(m,)在圖象M上,
①若點在圖象M1上,即m≥0,m22m4=
解得:m1=1+,m2=1-
(舍去)
②若點在圖象M2上,即m<0,m22m+4=
解得:m3=-1+(舍去),m4=-1-
綜上所述,m的值為1+或-1-
(4)若a>0,則圖象M的大致形狀如圖1,
①若線段PQ經過圖象M1的頂點(1,-5a)
則-5a=-1,得a=
對于圖象M2,-x2-
x+
=-1時,解得:x1=-1+
(舍去),x2=-1-
∵-1->-5
∴直線PQ與圖象M2的交點在點P的右側
∴線段PQ與圖象M2有一個交點
∴a=時,線段PQ與圖象M有兩個交點
②若線段PQ比圖象M1與y軸交點高時,如圖2,
則-4a<-1,解得:a>
若a<0,則圖象M的大致形狀如圖3,
③若線段PQ經過M2與y軸交點時,4a=-1 得a=,
對于圖象M1,-x2+
x+1=-1時,解得:x1=-2(舍去),x2=4,
即此時線段PQ與圖象M1交點為Q(4,-1),
∴當線段PQ比圖象M2與y軸交點低時,與圖象M2有兩個交點,與圖象M1沒有交點,
最低不得低過圖象M2的頂點(-1,5a),
∴5a<-1,
解得:a<,
綜上所述,線段PQ與圖象M有兩個交點時,a=或a>
或a<
.
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,交BA的延長線于點F,若弧EF的長為π,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市304國道通遼至霍林郭勒段在修建過程中經過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結果取整數,參考數據≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O是邊長為2的正方形ABCD的中心.函數y=(x﹣h)2的圖象與正方形ABCD有公共點,則h的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸的負半軸相交于點
,將拋物線
平移得到拋物線
,
與
相交于點
,直線
交
于點
,且
.
(1)求點的坐標;
(2)寫出一種將拋物線平移到拋物線
的方法;
(3)在軸上找點
,使得
的值最小,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a<0)的圖象與x軸的兩個交點A、B的橫坐標分別為﹣3、1,與y軸交于點C,下面四個結論:①16a+4b+c<0;②若P(﹣5,y1),Q(,y2)是函數圖象上的兩點,則y1>y2;③c=﹣3a;④若△ABC是等腰三角形,則b=﹣
或﹣
.其中正確的有_____.(請將正確結論的序號全部填在橫線上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,排球運動員站在點O處練習發球,將球從O點正上方2m的A處發出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(xk)2+h.已知球與O點的水平距離為6m時,達到最高2.6m,球網與O點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是( )
A. 球不會過網 B. 球會過球網但不會出界
C. 球會過球網并會出界 D. 無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某鄉鎮中學教學樓對面是一座小山,去年“聯通”公司在山頂上建了座通訊鐵塔.甲、乙兩位同學想測出鐵塔的高度,他們用測角器作了如下操作:甲在教學樓頂A處測得塔尖M的仰角為α,塔座N的仰角為β;乙在一樓B處只能望到塔尖M,測得仰角為θ(望不到底座),他們知道樓高AB=20m,通過查表得:tanα=0.5723,tanβ=0.2191,tanθ=0.7489;請你根據這幾個數據,結合圖形推算出鐵塔高度MN的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com