精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD是正方形, GBC上任意一點,DE⊥AG于點E,BF⊥AG于點F.

(1) 求證:DEBF = EF

(2) 當點GBC邊中點時, 試探究線段EFGF之間的數量關系, 并說明理由.

(3) 若點GCB延長線上一點,其余條件不變.請畫出圖形,寫出此時DE、BF、EF之間的數量關系(不需要證明).

【答案】1)通過三角形全等進而求證(2DEBF=AFAE=EF

【解析】

試題考查知識點:正方形;三角形的全等與相似;等量代換

思路通過利用正方形的性質,證明三角形的全等與相似,然后利用等量代換。

具體解答過程:

1)、四邊形ABCD是正方形

∴∠BAD=90°,AB=AD

∵DE⊥AG,BF⊥AG

∴∠AFB=∠DEA=90°

∵∠AFB+∠DAE=90°,∠ADE+∠DAE=90°

∴∠AFB=∠ADE

∴Rt△AFB≌Rt△DEA

∴DE=AFAE=BF

∴DEBF=AF-AE=EF

2)、當點GBC邊中點時,如下圖所示。

四邊形ABCD是正方形,

∴AB=BC,∠ABC=90°,AB:BG=2:1

∵∠AFB=∠ADE

∴Rt△AFB≌Rt△DEA∽Rt△ABG∽Rt△BFG

∴AE=BF,AF=DE=2AE,BF=2FG,AE=EF

∴EF=2FG

3)、如下圖所示。

∵DE⊥AG,BF⊥AG

∴∠AFB=∠DEA=90°

∵∠BAD=90°,∠EAF是平角,

∴∠EAD+∠FAB=90°

∵∠EAD+∠EDA=90°

∴∠FAB=∠EDA

∴Rt△AFB≌Rt△DEA

∴AE=BF,DE=AF

∴EF=EA+AFEF=DE+BF

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經過的最短距離為_________.(π取3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結AD1、BC1已知∠ACB=30°,AB=1,

(1)求證:△A1AD1≌△CC1B;

(2)當CC1=1時,求證:四邊形ABC1D1是菱形。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2x+m﹣2=0有兩個實數根,m為正整數,且該方程的根都是整數,則符合條件的所有正整數m的和為( 。

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:邊長為2的正方形OABC在平面直角坐標系中位于x軸上方,OAx軸的正半軸的夾角為60°,則B點的坐標為_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,分別以AC,BC為邊作等邊△ACD和等邊△BCE.設△ACD,△BCE,△ABC的面積分別是S1,S2,S3,現有如下結論:

①S1∶S2=AC2∶BC2;②連接AE,BD,則△BCD≌△ECA;③若AC⊥BC,則S1·S2S23.

其中結論正確的序號是__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】經過實驗獲得兩個變量 x(x 0), y( y 0) 的一組對應值如下表。

x

1

2

3

4

5

6

7

y

7

3.5

2.33

1.75

1.4

1.17

1

(1)在網格中建立平面直角坐標系,畫出相應的函數圖象,求出這個函數表達式;

(2)結合函數圖象解決問題:(結果保留一位小數)

的值約為多少?

②點A坐標為(6,0),點B在函數圖象上,OA=OB,則點B的橫坐標約是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,BD是矩形ABCD的對角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B′C′D′的位置,使B′BD中點,連接AB′,C′D,AD′,BC′,如圖2.

(1)求證:四邊形AB′C′D是菱形;

(2)求四邊形ABC′D′的周長.

1       2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校舉行以助人為樂,樂在其中為主題的演講比賽,比賽設一個第一名,一個第二名,兩個并列第三名.前四名中七、八年級各有一名同學,九年級有兩名同學,小蒙同學認為前兩名是九年級同學的概率是,你贊成他的觀點嗎?請用列表法或畫樹形圖法分析說明.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视